Maquinação CNC | Prototool https://prototool.com/pt/category/cnc-machining/ Sítio Web oficial da Prototool Sun, 14 Jan 2024 10:38:20 +0000 pt-PT por hora 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Maquinação CNC | Prototool https://prototool.com/pt/category/cnc-machining/ 32 32 Como as principais fábricas de maquinagem CNC lidam com os defeitos de maquinagem CNC https://prototool.com/pt/cnc-machining-defects/ https://prototool.com/pt/cnc-machining-defects/#comments Mon, 08 Jan 2024 02:15:24 +0000 https://prototool.com/?p=17116 How Top CNC Machining Factories Handle CNC Machining Defects
Prototool

Este artigo mostra como os principais fornecedores lidam com os defeitos de maquinagem CNC, revelando as formas como as suas peças de alta qualidade são submetidas para superar os desafios.

The post How Top CNC Machining Factories Handle CNC Machining Defects appeared first on Prototool written by Prototool.

]]>
How Top CNC Machining Factories Handle CNC Machining Defects
Prototool

Top CNC machining factories achieve flawless workpieces because they have encountered numerous CNC machining defects. These experiences have taught operators how to better shape the desired forms. Understanding CNC machining defects is not entirely negative; it can significantly aid future machining operations.

Prototool, a leading CNC machining factory in China, has summarized the causes and solutions for CNC machining defects based on past experiences. This serves two purposes: to facilitate industry knowledge exchange and to demonstrate our expertise to our clients.

CNC machining defects animation

Overcutting in Workpieces

Causas:

  1. Tool springing due to insufficient tool strength, excessive length, or small size.
  2. Improper operation by the operator.
  3. Uneven cutting allowance (e.g., 0.5 on curved side surfaces, 0.15 on the bottom).
  4. Inappropriate cutting parameters (e.g., excessive tolerance, too fast SF settings).

Improvements:

  1. Tool Usage Principle: Prefer larger and shorter tools where possible.
  2. Implement a chamfering program to maintain uniform allowance (consistent allowance for side and bottom surfaces).
  3. Adjust cutting parameters reasonably, rounding large allowance corners.
  4. Utilize the machine’s SF function, allowing operators to fine-tune speed for optimal cutting.
CNC Machining defects Overcutting in Workpiece

Centering Issues

Causas:

  1. Inaccuracy in manual operation by the operator.
  2. Burrs around the mold.
  3. Magnetic centering rods.
  4. Non-vertical sides of the mold.

Improvements:

  1. Manual operations should be carefully checked and repeated, centering at the same point and height as much as possible.
  2. Remove burrs around the mold with an oilstone or file, clean with a rag, and confirm by hand.
  3. Demagnetize the centering rod before using it on the mold (use ceramic rods or others).
  4. Use a dial indicator to check the mold’s verticality (discuss solutions with the fitter if there’s significant verticality error).

Tool Setting Issues

Causas:

  1. Inaccuracy in manual operation by the operator.
  2. Incorrect tool clamping.
  3. Errors in the tool tip on the fly cutter (inherent inaccuracies in the fly cutter).
  4. Discrepancies between R-cutters, flat-bottom cutters, and fly cutters.

Improvements:

  1. Carefully repeat manual operations, ensuring tool setting is consistent.
  2. Clean the tool clamp with an air gun or rag before clamping.
  3. When measuring the tool rod or base surface, use a single cutter tip on the fly cutter.
  4. Create a separate tool setting program to avoid discrepancies between R-cutters, flat-bottom cutters, and fly cutters.

CNC Crash – Programming

Causas:

  1. Insufficient or unset safety height (tool or chuck collides with the workpiece during rapid feed G00).
  2. Mismatch between the tool listed on the program sheet and the actual tool used in the program.
  3. Incorrect tool length (blade length) and actual machining depth listed on the program sheet.
  4. Discrepancies between depth Z-axis values on the program sheet and actual Z-axis measurements.
  5. Coordinate setting errors during programming.
CNC crash on programming

Improvements:

  1. Accurately measure the workpiece height and ensure the safety height is above the workpiece.
  2. Ensure consistency between the tool listed on the program sheet and the actual tool used (preferably use automated or pictorial program sheets).
  3. Measure the actual machining depth on the workpiece, clearly noting the tool length and blade length on the program sheet (typically, the tool clamping length should be 2-3mm above the workpiece, and the blade clearance should be 0.5-1.0mm).
  4. Accurately measure the Z-axis on the workpiece and clearly note it on the program sheet (this is usually a manual operation and should be double-checked).

CNC Crash – Operator Errors

Causas:

  1. Incorrect Z-axis depth tool setting.
  2. Errors in centering and operation numbers (e.g., not accounting for tool radius in single-side measurements).
  3. Using the wrong tool (e.g., using a D10 tool instead of a D4).
  4. Running the wrong program (e.g., running A9.NC instead of A7.NC).
  5. Incorrect manual operation of the handwheel direction.
  6. Pressing the wrong direction during manual rapid feed (e.g., pressing X instead of -X).

Improvements:

  1. Pay attention to the tool setting position on the Z-axis (bottom surface, top surface, split surface, etc.).
  2. Double-check centering and operation numbers after completion.
  3. Repeatedly check the tool against the program sheet and program before clamping.
  4. Run programs sequentially and in order.
  5. Operators should improve their proficiency with manual machine operations.
  6. Raise the Z-axis above the workpiece before moving it manually and quickly.

Surface Accuracy in Curved Areas

Causas:

  1. Unreasonable cutting parameters leading to rough surfaces on curved workpieces.
  2. Dull tool edges.
  3. Excessively long tool clamping and blade clearance.
  4. Poor chip removal, air blowing, and oil flushing.
  5. Programming of the cutting path (consider using climb milling where possible).
  6. Burrs on the workpiece.

Improvements:

  1. Set reasonable cutting parameters, tolerances, allowances, and feed speeds.
  2. Operators should regularly inspect and replace tools as needed.
  3. Clamp tools as short as possible, minimizing blade clearance.
  4. Set appropriate cutting, feed speeds, and tool types (flat, R, and ball nose cutters).
  5. Workpiece burrs are directly related to the machine, tool, and cutting path. Understanding the machine’s capabilities is crucial for re-cutting burr edges.

The post How Top CNC Machining Factories Handle CNC Machining Defects appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/cnc-machining-defects/feed/ 1
Precisão na fresagem de mergulho: Geometria da ferramenta e parâmetros de corte essenciais https://prototool.com/pt/plunge-milling/ Wed, 13 Dec 2023 03:15:09 +0000 https://prototool.com/?p=16197 Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials
Prototool

If you’re already familiar with basic machining, plunge milling is like adding a powerful tool to your toolkit. Unlike regular cutting, which happens around the edges, plunge milling operations are done right at the end of the tooling. Now, why is this important? Imagine you have a long tool sticking out or dealing with tricky […]

The post Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials appeared first on Prototool written by Prototool.

]]>
Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials
Prototool

If you’re already familiar with basic machining, plunge milling is like adding a powerful tool to your toolkit. Unlike regular cutting, which happens around the edges, plunge milling operations are done right at the end of the tooling.

Now, why is this important? Imagine you have a long tool sticking out or dealing with tricky materials like titanium – plunge milling becomes the hero. It’s like a backup plan when things get tough, and other methods don’t quite work.

You might be thinking, “I know the basics, why bother with plunge cutting?” Well, here’s the deal: While it might not be the fastest way to remove metal under normal conditions, plunge milling shines in situations where other methods struggle.

Hence, to help you make the most of this CNC machining approach, this article will delve deeper into the concepts and machining approaches of plunge milling. So keep reading to learn all about it!

What to Know About The Cutting Process?

Understanding the cutting process is key. Unlike traditional milling, where radial forces dominate, plunge milling involves axial cutting forces. The process can be likened to interrupted boring, demanding a different approach to programming table feed and rapid traverse.

Plunge Milling Tips and Techniques

To make the most of plunge milling operations, consider these practical tips:

  • Opt for a horizontal machine for better chip evacuation.
  • Begin milling from the bottom and work your way up.
  • Use cutting fluid or compressed air to aid chip evacuation.
  • Compared to traditional methods, plunge cutting requires a lower feed per tooth.
  • Engage more than one tooth for enhanced efficiency.
  • Leverage extra-close pitch cutters for improved performance.
  • Gradually decrease plunge depth to minimize vibration.
  • Utilize a “hook program” to prevent re-cutting on the return stroke.
  • Maintain a constant stock for subsequent finishing operations.

Application Scenarios: Slots, Cavities, Corners

Once you understand the plunge milling operation’s importance, use the plunge-cutting technique and make the most of it. But when? Here are some specific scenarios where plunge milling proves beneficial:

  • Slots: Ideal for machining deep and closed slots. Effective chip evacuation is essential.
  • Cavities/Pockets: Critical for chip evacuation, especially in closed slotting. Consider a horizontal setup and cutting fluid for improved results.
  • Corners: Advantages in plunge milling operations for rest milling after roughing operations in deep 90-degree corners.

Feeds and Speeds in Plunge Milling Operation

Are you not yet familiar with plunge milling speeds and feeds? Let’s go ahead and explore the X and Y stepovers, feeds, and speeds then—essential elements for successful plunge milling.

X and Y Stepovers

To get started, let’s decide on the X and Y stepovers. According to Sandvik, a good starting point for the sideways motion is 80 percent of the cutter diameter. This helps prevent skinny stalks from sticking up in the corners between the holes.

Example of Roughing Out a Pocket

To better understand how plunge milling feeds and speeds, let’s consider an example where you have the task of roughing out a pocket with 1/8-inch corner radii. In this task, you have a limited end mill diameter of 1/4 inch and a pocket of 1 1/2 inches deep.

Here, using X and Y stepovers of 0.0625 inches, you can check feeds and speeds with G-code editor. Once you check, you may find a decent material removal rate but higher deflection, risking tool damage.

You can turn to the Plunge Milling Mini-Calc in this situation. This mini-calc allows us to enter Step Up and Step Over values, adjusting the feed rate accordingly.

After using a G-code editor for CNC machines, you will see that the material removal rate is back to an efficient level. Moreover, deflection will become less of a concern since you’re plunging.

Ultimately, this shows how plunge cutting emerges as a valuable technique in the manufacturing industry that solves various challenges and optimizes efficiency. All you need is to implement the right approach to X and Y stepovers and understand feeds and speeds better to implement this machining approach per your specific needs.

Unraveling CAM Packages and Techniques

Speaking of CNC machining coding and software used for plunge milling operations, we can’t miss exploring the ins and outs of plunge cutting, plunge milling operations, and the essential CAM packages you need to know about. So, let’s explore that further below.

Plunge Cutting 101

Let’s start with the basics—plunge cutting. This process is like making a straight, vertical cut into the material, almost like a direct downward motion. This technique is handy for creating features with a flat bottom.

Beyond basic plunge cutting, advanced plunge milling operations add a dynamic element to the manufacturing process. But, instead of a flat-bottomed cut, plunge cutting allows for a more versatile 3D cut. This is especially beneficial for intricate designs and varied surfaces.

Some additional facets of plunge milling that should be considered in this cutting process include:

Vertical Milling:

When we say fresagem vertical, the tool moves up and down like a seesaw. It’s a vertical dance allowing precise cuts and efficient material removal. Vertical milling is a must-know for any aspiring machinist.

Direct Milling:

Direct milling is the shortcut you’ve been looking for. It’s straightforward, almost like going straight to the point without any detours. When time is of the essence, direct milling is your go-to move.

Straight Down Milling:

Straight Down milling is like a no-nonsense friend who gets things done efficiently. It’s a technique where the cutter moves straight down into the material with no fuss, no frills—just pure effectiveness.

Z-axis Machining: 

Z-axis machining is all about mastering the vertical dimension. It brings depth and precision to your cuts, taking your milling game to new heights.

Plunge Routing:

Plunge routing is your guide through the material maze. It involves making strategic cuts by plunging into the material at specific points. Think of it as the navigator ensuring you take the right route.

Deep Milling:

When you want to go beneath the surface, deep milling is your strategy. It’s all about making substantial cuts and exploring the depths of your material. Deep milling is your ticket to uncovering hidden potentials.

Vertical Plunge:

A vertical plunge is like a controlled dive into the material. It’s a precise downward movement that allows you to navigate with finesse. Vertical plunge is the secret to achieving accuracy in your machining adventures.

Direct Cut Milling:

Last but not least, direct-cut milling is the epitome of efficiency. It’s a technique that gets straight to the business of cutting, ensuring every move counts. When you’re aiming for effectiveness, direct-cut milling is your ally.

How to Pick the Right CAM Package?

Now that you know the plunge-milling family, let’s talk CAM packages. To choose the right CAM package for plunge milling toolpaths when operating a CNC machine, you need to:

Check if your CAM package supports true 3D or sticks to 2D plunge milling. True 3D provides more versatility, while 2D works for flat-bottomed features.

Another key consideration is how the plunge cycle retracts from the wall during the overall retraction. This clever technique, as often seen in the Plunge Rough retract style, reduces chatter and boosts tool life.

Conclusion: Plunge Milling Mastery

In the manufacturing landscape, where every cut counts, plunge milling offers unparalleled benefits. From its ability to reduce deflection and enhance tool life to its efficiency in machining tough materials, plunge milling is a versatile and indispensable technique.

It’s the key to unlocking intricate designs, maximizing material removal rates, and ensuring a superior surface finish. But, when you proceed with plunge milling operations, remember that even the most skilled craftsmen benefit from professional support. And if you’re ever stuck, we have your back as professional CNC manufacturers in the business for years now.

Em Prototool, a trusted name in precision manufacturing, we offer various Serviços de fabrico CNC, custom manufacturing, and serviços de moldagem por injeção. Whether you need guidance on tool selection, advice on optimizing feeds and speeds, or comprehensive assistance in implementing plunge milling techniques, Prototool is your dedicated partner.

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Periférico Milling
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials appeared first on Prototool written by Prototool.

]]>
Técnicas estratégicas para operações de fresagem periférica eficientes https://prototool.com/pt/peripheral-milling/ Wed, 13 Dec 2023 02:57:25 +0000 https://prototool.com/?p=16193 Strategic Techniques for Efficient Peripheral Milling Operations
Prototool

Peripheral milling is a crucial machining operation employed by intermediate and professional manufacturers to enhance metal removal rates and extend tool life. This guide explores various strategies, focusing on plain milling, standard milling, and the distinction between up-milling and down-milling. So, if you’re opting for plain milling for your next production project, read on to […]

The post Strategic Techniques for Efficient Peripheral Milling Operations appeared first on Prototool written by Prototool.

]]>
Strategic Techniques for Efficient Peripheral Milling Operations
Prototool

Fresagem periférica é uma operação de maquinagem crucial utilizada por fabricantes intermédios e profissionais para aumentar as taxas de remoção de metal e prolongar a vida útil da ferramenta.

Este guia explora várias estratégias, centrando-se em fresagem plana, fresagem standarde a distinção entre fresagem ascendente e trituração descendente.

Por isso, se optar pela fresagem plana para o seu próximo projeto de produção, continue a ler para saber tudo sobre as operações de fresagem periférica - para além do básico!

Fresagem periférica: Uma breve visão geral

A fresagem periférica, vulgarmente conhecida como fresagem plana, é uma operação de fresagem que utiliza um fresa rotativa com um eixo paralelo à peça de trabalho.

Ao contrário da fresagem frontal, em que as ferramentas de corte são montadas perpendicularmente à peça, na fresagem periférica, as arestas de corte da fresa retificam na periferia da peça, proporcionando um meio eficiente de remover grandes quantidades de material da superfície.

Tipos de fresagem periférica

Na fresagem simples, compreender as nuances das diferentes técnicas é crucial para otimizar os processos de maquinagem. Vamos aprofundar dois tipos principais: Fresagem Ascendente e Fresagem Descendente (Fresagem em Escalada).

Fresagem para cima

A fresagem ascendente, ou fresagem convencional, envolve dentes da fresa que se movem na direção oposta à do avanço. Isto resulta em aparas inicialmente finas que crescem gradualmente ao longo do corte. O prolongamento do engate da ferramenta leva à formação de aparas longas.

No entanto, é importante notar que, à medida que a fresa sai, a peça de trabalho pode ter tendência a levantar-se, necessitando de uma fixação robusta para manter a estabilidade. Os fabricantes devem considerar a fresagem ascendente quando procuram um processo de corte robusto, especialmente para materiais em que a evacuação de aparas é crítica.

Fresagem descendente (Fresagem ascendente)

Em contraste, a Fresagem Descendente, ou Fresagem em Escalada, vê os dentes da fresa a moverem-se na mesma direção que o avanço. Isto produz aparas mais curtas com espessura decrescente ao longo do comprimento do corte. As forças de fricção reduzidas contribuem para minimizar a geração de calor, aumentando a vida útil da ferramenta.

As forças tangenciais actuam para baixo, assegurando um corte estável e permitindo uma maior taxa de avanço. Os fabricantes devem optar pela fresagem descendente quando dão prioridade à redução do calor, à maior longevidade da ferramenta e a uma experiência de maquinagem mais suave, especialmente quando a alta precisão e o acabamento são fundamentais.

Fresagem ascendente vs. fresagem descendente

Fresagem para cimaFresagem descendente
Direção do cortador em sentido contrário ao do avançoA direção do cortador é a mesma que a do avanço
Requer um elevado poder de corteRequer apenas menos potência de corte
As forças de corte actuam para cimaAs forças de corte actuam para baixo
Adequado para cortes grosseirosAdequado para o acabamento de superfícies
Elevada taxa de desgaste da ferramentaMenor taxa de desgaste da ferramenta
A espessura das aparas aumentaA espessura da apara diminui ao longo do corte
Principalmente utilizado para metais ferrososPrincipalmente utilizado para alumínio e ligas

Os diferentes métodos de fresagem periférica e as fresas

Compreender o "como" e o "quando" dos métodos de fresagem periférica e das fresas é fundamental para otimizar as operações de fresagem. Como fabricantes experientes, já estão familiarizados com a fresagem plana, por isso vamos aprofundar as nuances destas técnicas e ferramentas.

Métodos de fresagem periférica

1. Fresagem de placas

  • Visão geral: A fresagem de placas envolve a utilização de uma fresa plana, normalmente mais larga do que a peça de trabalho, para moldar superfícies planas ou reduzir eficazmente a espessura da peça.
  • Utilização: Durante a fresagem de chapas, a fresa, mais larga do que a peça de trabalho, desloca-se transversalmente, removendo sistematicamente o material e criando uma superfície exatamente plana ou reduzindo a espessura conforme necessário.
  • Ideal para: Este método é ideal para aplicações onde é necessário criar superfícies grandes e planas ou quando a redução eficiente da espessura da peça é um objetivo principal.

2. Fresagem de ranhuras

  • Visão geral: A fresagem de ranhuras utiliza uma fresa com uma largura inferior à da peça para criar canais rectangulares ou redondos na peça de trabalho.
  • Utilização: Na fresagem de ranhuras, a largura da fresa é estrategicamente inferior à da peça, permitindo-lhe formar ranhuras durante a passagem, o que a torna particularmente eficaz para a criação de canais de formas variadas.
  • Ideal para: Este método é ideal para aplicações que requerem a criação de ranhuras, especialmente quando são necessárias ranhuras finas para desenhos específicos.

3. Fresagem lateral

  • Visão geral: A fresagem lateral consiste em maquinar uma superfície em ângulo reto em relação ao eixo de rotação da fresa.
  • Utilização: A fresa lateral funciona maquinando as faces laterais da peça de trabalho, criando uma superfície vertical plana e precisa, perpendicular ao eixo de rotação da fresa.
  • Ideal para: Ideal para situações em que a maquinagem de faces laterais ou a criação de superfícies verticais planas é um requisito principal.

4. Fresagem em bando

Visão geral: A fresagem em grupo é uma operação em que mais do que uma superfície vertical paralela é maquinada numa única passagem.

Utilização: Várias fresas são montadas na mesma árvore, espaçadas com base na largura necessária utilizando espaçadores, permitindo a maquinação de várias superfícies simultaneamente.

Ideal para: Este método é ideal quando o objetivo é maquinar eficazmente várias superfícies paralelas em simultâneo.

5. Fresagem com espátula

  • Visão geral: A fresagem Straddle é semelhante à fresagem em grupo, mas tem a caraterística única de cortar duas ranhuras em simultâneo.
  • Utilização: Múltiplos cortadores na mesma árvore criam duas ranhuras numa única passagem, tornando-a eficiente para projectos que requerem a criação de ranhuras duplas.
  • Ideal para: A fresagem Straddle é ideal para aplicações em que é necessário criar ranhuras duplas de forma eficiente.

6. Fresagem de formas

  • Visão geral: A fresagem de formas envolve a utilização de fresas especialmente concebidas para maquinar diferentes padrões na peça de trabalho.
  • Utilização: As fresas de forma personalizada criam padrões complexos como recessos redondos e contas na peça de trabalho, acrescentando um toque único ao processo de maquinagem.
  • Ideal para: Este método é ideal para aplicações que requerem a criação de padrões e contornos complexos na peça de trabalho.

Fresas periféricas

1. Fresa para lajes

  • Visão geral: As fresas para lajes são discos circulares com dentes rectos ou em espiral na periferia, concebidos para uma remoção eficiente do material.
  • Ideal para: Perfeito para aplicações de fresagem horizontal em que o objetivo é remover uma grande quantidade de material e produzir superfícies planas.

2. Fresa lateral

  • Visão geral: As fresas laterais têm dentes de corte num ou em ambos os lados e dentes na periferia, o que as torna eficazes para trabalhos de fresagem em straddle e corte de ranhuras.
  • Ideal para: Nas situações em que é necessária a fresagem de straddle, o corte eficiente de ranhuras é um objetivo primordial.

3. Fresa escalonada

  • Visão geral: As fresas escalonadas são fresas laterais com dentes dispostos em ziguezague.
  • Ideal para: Adequado para fresar ranhuras em que a profundidade é maior do que a largura, evitando interferências com as acções de corte.

4. Fresa côncava e convexa

  • Visão geral: As fresas côncavas e convexas podem fresar contornos convexos e côncavos variáveis na superfície da peça de trabalho com base no diâmetro da forma circular.
  • Ideal para: Perfeito para aplicações que requerem a fresagem de superfícies com perfis convexos e côncavos variáveis.

5. Fresa Woodruff

  • Visão geral: As fresas Woodruff têm dentes de corte na periferia de um disco ligado a uma haste reta.
  • Ideal para: Essencial para o corte preciso de ranhuras de chaveta em veios.

6. Fresa de corte

  • Visão geral: As fresas de fresagem são fresas cilíndricas com dentes de corte helicoidais concebidas para cortar dentes na peça de trabalho.
  • Ideal para: Utilizado especificamente para cortar estrias e engrenagens de rodas dentadas.

Pode melhorar estrategicamente os seus processos de maquinação, considerando as características e aplicações de cada método de fresagem periférica e fresa.

Quer se trate de criar padrões complexos ou de remover material de forma eficiente, a seleção do método e da fresa correctos garante resultados óptimos nos seus esforços de fabrico.

Parâmetros chave na fresagem periférica

Relação entre a espessura das aparas e a largura de corte

Uma combinação óptima da espessura da apara e da largura do corte é fundamental para uma fresagem periférica eficaz. E com um equilíbrio adequado entre estes dois factores, é possível reduzir facilmente o tempo de maquinação e aumentar a vida útil da ferramenta. Nomeadamente, a espessura fina da apara na saída e os pequenos arcos de engate resultam numa vida útil mais longa para uma determinada ferramenta de corte.

Entrada da peça de trabalho - Rolamento para o corte

Entre as estratégias de corte propostas, a entrada na peça de trabalho é fundamental. A técnica de rolamento, em que a fresa roda num ponto pivô, entrando gradualmente até atingir a largura nominal do corte, revela-se vantajosa.

Esta abordagem minimiza a espessura das aparas durante a saída, reduz a temperatura e elimina as vibrações em comparação com a entrada direta.

Modelo de força de corte para entrada do cortador

Tendo em conta os diferentes tipos de fresas e a sua utilização, é importante introduzir um novo modelo de força de corte para estimar a entrada da fresa na peça de trabalho até ao engate total.

Para isso, são identificadas três zonas distintas durante a entrada da fresa: os cortes começam até atingir o canto esquerdo da peça de trabalho, cortando a superfície superior da peça de trabalho, e o engate completo.

O perfil de força varia nas duas primeiras zonas, evidenciando as condições de corte variáveis. Uma vez totalmente engatada, o perfil de força estabiliza-se.

Vantagens da entrada de enrolar

Comparando entradas directas e rolantes, é analisada a evolução das forças de corte, a formação de aparas e o volume de remoção de metal.

A técnica de laminação apresenta um aumento mais gradual das forças de corte, resultando em aparas mais finas que saem da fresa desde o início do processo de maquinação. Os arcos de engate são mais curtos, levando a temperaturas mais baixas no canal de corte e a um menor desgaste da ferramenta.

Conclusão

Em conclusão, abordagens eficazes de fresagem periférica podem melhorar significativamente a vida útil da ferramenta e as taxas de remoção de metal, enfatizando particularmente a técnica de entrada de rolamento.

Os dados experimentais apresentados neste guia servem de base para os fabricantes que procuram melhorar as suas estratégias de fresagem. Ao implementar estes conhecimentos, os profissionais podem otimizar os seus processos, reduzir o desgaste das ferramentas e alcançar uma maior eficiência nas operações de fresagem periférica.

Ainda tem dúvidas? Consulte os nossos fabricantes profissionais em Prototool.

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Fresagem periférica
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Strategic Techniques for Efficient Peripheral Milling Operations appeared first on Prototool written by Prototool.

]]>
Fresagem lateral de excelência: Um mergulho profundo em técnicas e soluções práticas https://prototool.com/pt/side-milling/ https://prototool.com/pt/side-milling/#respond Wed, 13 Dec 2023 02:30:57 +0000 https://prototool.com/?p=16189 Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions
Prototool

Explore a fresagem lateral sobre as suas técnicas essenciais, seleção de ferramentas e soluções práticas para precisão e eficiência nas operações.

The post Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions appeared first on Prototool written by Prototool.

]]>
Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions
Prototool

Precision is the heartbeat of side milling. This guide is your compass in navigating its depths. Tailored for manufacturers and operators in fresagem horizontal, we will take you through the intricacies of tool material selection, technical aspects of side milling, and the critical distinctions between plain and edge milling.

So, if you’re looking for answers in the same, keep reading!

Selection of Cutting Tools and Materials for Side Milling

Whether it’s your first time operating a milling machine or you’re familiar with it already, it can be tricky to ensure all your cutting tools and materials are in check for every side milling endeavor.

So, before we move forward to the technical considerations, let’s consider the cutting tools and materials you should have around when using a horizontal milling machine for any project.

  • Tool Material Selection: Tailor your choice of materials, such as high-speed steel (HSS), carbide, cobalt, or diamond, based on the nuances of the workpiece. Consider factors like material composition, desired finish, and milling speed to make an informed decision.
  • Cutter Design Customization: Precision lies in the details. Customize the number of teeth, flute design, and cutter geometry according to the material’s specific demands and the milling operation’s intricacies.
  • Coatings for Extended Tool Life: Elevate tool longevity by exploring coatings like titanium nitride (TiN), enhancing the hardness and resistance to wear.

Technical Aspects of Side Milling

Moving onto the technical aspects, what cutting speeds, feeds, and other machine modifications do you look at before turning it on? Not sure? Here’s a list:

  • Cutting Speed Calculation: Delve into the specifics of cutting speed, measuring the tool’s edge movement through the material in surface feet per minute (SFM) ou meters per minute (MPM). Precision here is the foundation for optimal results.
  • Feed Rate Determination: Uncover the intricacies of feed rate, defining the speed at which the workpiece engages with the cutter, measured in inches per minute (IPM) ou millimeters per minute (MMPM). Achieving the perfect balance is an art.
  • Balancing Speed and Feed for Efficiency: Striking the right equilibrium between cutting speed and feed rate is a technical requirement and an art form. This balance is the key to minimizing tool wear while maximizing productivity and achieving the desired surface finish.

The Role of Coolants and Lubricants

Another key consideration when operating a periphery milling machine is to keep the presence and usage of coolants and lubricants in check. What is the role of these materials? Let’s explore:

  • Coolants as Heat Dissipators: Coolants are essential for dissipating heat from the cutting zone. This critical function prevents tool overheating and ensures efficient chip removal.
  • Lubricants for Reduced Friction: Lubricants are key in lowering friction between the tool and the workpiece. This reduction enhances tool life and contributes to an impeccable surface finish.

Selection and Application Expertise

Once you understand the role of coolants and lubricants, picking the right lubricant for your specific milling needs is important. The choice depends on the machined material and the milling operation’s specific nuances. Also, while you’re at it, remember that applying these fluids is an art, requiring meticulous attention to detail.

Precision Unveiled: Plain Milling vs. Side Milling in Horizontal Machining

Now you know the key considerations of operating a side milling or edge milling machine. But how do you determine that you need a fresagem horizontal and not a plain milling machine?

For this, understanding the differences between plain and side milling is important. Arbor milling cutters, namely plain and edge milling cutters, each bring unique attributes to the machining table. Let’s have a closer look at both these milling options.

Plain Milling: Crafting Refined Plane Surfaces

Plain milling, or slab milling, is the artisan’s choice for sculpting plane surfaces, especially when finesse is non-negotiable. Its spiral design empowers the simultaneous engagement of multiple teeth, ensuring a seamless operation with minimal vibrations and disturbances.

Here’s a detailed evaluation of this milling process:

CaracterísticasPlain Milling
Cutter DesignIn this machine, helical design compensates for the absence of side-cutting teeth.
Setup ProcedureIt helps achieve optimal efficiency with a wider cutter than the surface. Smaller diameter cutter chosen for enhanced precision. Critical alignment, albeit less stringent than side milling, as top surface operations are the norm.
Machining MethodsIt involves two milling methods: Conventional Milling: Work fed into the cutter’s rotating direction. Climb Milling: Requires caution due to potential cutter breakage. (Check fresagem convencional e fresagem ascendente)
Safety PrecautionsThe use of safety glasses is non-negotiable here. Rings, watches, and jewelry should also be removed to avoid accidents. Additionally, its important to consider the prudent use of rapid traverse, avoiding abrupt movements without loosening locking screws.

Side Milling: Mastering Intricate Grooves with Versatility

Side milling or external milling emerges as the virtuoso, excelling in crafting intricate steps or grooves. Distinguished by varying widths, diameters, and adaptable tooth arrangements—either straight or staggered—side milling showcases remarkable adaptability in the hands of seasoned machinists.

Here’s a detailed evaluation of this milling process:

CaracterísticasFresagem lateral
Cutter DesignAdaptable design suited for cutting deep slots or grooves, with staggered toothed variants providing enhanced chip space at higher speeds.
Setup ProcedureMeticulous alignment is crucial for precise cuts. Precise calculation of spindle RPM based on cutting foot speed and cutter diameter. Critical feed rate calculation is contingent on the number of teeth on the cutter.
Machining MethodInside Milling Operations: Conventional milling is favored for optimal results.
Depth of CutIdeal Depths: Range between 100 and 200 thousandths, achieving a delicate balance between efficiency and precision.
Practical DemonstrationExemplifying the prowess of external milling, a meticulously carved groove in a previously machined part showcases the finesse and adaptability of this advanced machining approach.

In a nutshell, the choice between plain and side milling becomes an artful decision, each method revealing its prowess in the hands of a skilled artisan. While demanding precision, these techniques grant the operator a symphony of possibilities to craft intricate pieces with unparalleled finesse.

When Should You Consider Side Milling?

Side milling emerges as a versatile machining process with diverse applications across industries, presenting a strategic choice for skilled operators in various scenarios.

Understanding when to consider edge milling is crucial for achieving optimal results in machining operations.

Flat Surface Machining

Side milling becomes the method of choice when the objective is to create expansive flat surfaces on workpieces, particularly when their size exceeds the capabilities of alternative processes like grinding or planing.

This approach proves invaluable for crafting flat surfaces on substantial components such as machine beds, bases, and tables. The precision achievable through edge milling ensures the desired flatness in these critical elements.

Slotting for Gears and More

One of the prime applications of side milling is slotting, providing an effective means to generate slots or grooves along the sides of a workpiece. This capability is extensively employed in producing gears, keyways, and splines. Edge milling’s adaptability in creating these essential features contributes to its prominence in gear manufacturing and related industries.

Contouring Complex Geometries

Side milling transforms into a proficient tool for contouring, enabling the creation of intricate geometries and precise contours on a workpiece.

This method empowers operators to manufacture components with exacting shapes and dimensions by leveraging specialized cutting tools with diverse shapes and profiles. The nuanced control offered by horizontal milling makes it indispensable for applications demanding complex and precise geometrical features.

Surface Finishing Excellence

Side milling plays a pivotal role in achieving superior surface finishes, particularly critical in industries like aeroespacial, where the performance of components is intricately tied to surface quality.

The process ensures a smooth and refined surface finish on the workpiece, meeting the stringent requirements of aerospace applications where even minor imperfections can impact component performance.

Overcoming 3 Common Challenges in Side Milling

In the intricate world of external milling, addressing common challenges is paramount to achieving exceptional results. Let’s explore practical solutions for each aspect, ensuring a comprehensive approach to side-milling excellence.

1. Addressing Tool Wear: Prolonging Tool Life Through Vigilance

Tools in side milling undergo wear and tear, affecting their longevity and performance. To mitigate this, establish a comprehensive inspection routine that combines regular visual examinations with dimensional checks.

Early detection of wear signs is crucial. Additionally, consider strategically utilizing advanced coatings like titanium nitride (TiN) to enhance tool durability and increase hardness. Opting for tools crafted from robust materials such as carbide or high-speed steel (HSS) tailored to the workpiece’s demands further extends operational life.

2. Mastering Precision: Unleashing the Power of CNC Milling Machines

Precision in milling operations is essential and can be achieved through leveraging the capabilities of Computer Numerical Control (CNC) machines. The computerized precision offered by CNC technology ensures automated and consistent precision.

Here, you can utilize CNC technology or consider professional CNC manufacturers to help automate processes, guaranteeing consistently precise milling results. Furthermore, meticulous adjustments to milling paths for heightened accuracy, coupled with software solutions for dynamic optimization, contribute to mastering precision in external milling operations.

3. Perfecting Surface Finish: The Art of Achieving Impeccable Results

Attaining superior surface finishes on machined components requires a meticulous approach to tool selection and parameter optimization. Opt for tools with materials precisely matched to the workpiece’s requirements for optimal results.

Specialized tools designed for achieving superior surface finishes can make a significant difference. Additionally, fine-tuning milling parameters such as speed and feed is crucial for impeccable surface finishes.

It is also important to employ real-time monitoring and adjustment of milling parameters to adapt to changing conditions during the machining process, ensuring a perfect surface finish in horizontal milling operations.

Conclusão

The strategic application of side milling in flat surface machining, slotting, contouring, and surface finishing underscores its significance in machining operations.

The adept use of specialized cutting tools and precise control in edge milling empowers operators to navigate the intricacies of external machining processes. It is an indispensable technique in the toolkit of those engaged in horizontal milling and advanced surface machining.

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Periférico Milling
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/side-milling/feed/ 0
Levar o Face Milling para o próximo nível: Tudo o que precisa de saber https://prototool.com/pt/face-milling/ https://prototool.com/pt/face-milling/#respond Wed, 13 Dec 2023 02:25:08 +0000 https://prototool.com/?p=16185 Taking Face Milling to the Next Level: Everything You Need to Know
Prototool

Explore um artigo impressionante sobre a fresagem de faces, que abrange tudo, desde estratégias básicas a avançadas para a precisão na maquinagem CNC.

The post Taking Face Milling to the Next Level: Everything You Need to Know appeared first on Prototool written by Prototool.

]]>
Taking Face Milling to the Next Level: Everything You Need to Know
Prototool

Já se sentiu um pouco perdido no mundo do fresagem frontalNão tem a certeza de qual a ferramenta mais adequada às suas necessidades de precisão? Se o som das fresadoras é a sua praia, não está sozinho. Este breve guia está aqui para o ajudar.

A fresagem de faces, em que a ferramenta de corte encontra a superfície num ângulo perfeito, criando essas superfícies planas e lisas, pode ser complicada.

fresagem de faceamento padrão

Explorando a Fresagem de Faceamento vs Fresagem Periférica: Uma análise comparativa

Na fresagem, a escolha entre fresagem frontal e fresagem periférica podem ter um impacto significativo nos seus resultados de maquinação. Vamos aprofundar as nuances de cada método, descobrindo as suas características únicas.

AspetoFresagem de facesFresagem periférica (Fresagem de lajes)
Orientação do cortadorA fresa é posicionada perpendicularmente à peça a fresar, permitindo um contacto direto com a peça de trabalho.A fresa é alinhada paralelamente à peça, desbastando a parte superior da peça a partir dos lados.
Ponto de contactoNa fresagem frontal, a ponta da fresa encaixa diretamente na superfície da peça de trabalho durante a maquinação.Os lados da fresa entram em contacto com a superfície superior da peça de trabalho, iniciando a remoção de material.
Método de corteA fresagem em face completa o corte utilizando a face plana da fresa, cujo eixo é perpendicular à superfície da peça de trabalho.A fresagem periférica efectua o corte utilizando os dentes periféricos da fresa, que desbastam o material da peça de trabalho.
Dentes de corteOs dentes da fresa são estrategicamente colocados na periferia e na face da ferramenta de fresagem na fresagem de face.Na fresagem periférica, os dentes estão localizados exclusivamente na periferia da fresa, contribuindo para a remoção de material.
Foco de corteA fresagem em face depende principalmente dos dentes periféricos para o corte, enquanto os dentes da face proporcionam operações de acabamento.A fresagem periférica é utilizada principalmente para maquinar superfícies planas, com o foco de corte no contorno axial da fresa.
Compatibilidade de máquinasA fresagem de faces é versátil e aplicável tanto em máquinas de fuso horizontal como vertical.A fresagem periférica é geralmente efectuada em máquinas de fuso horizontal.
Remoção de materialA fresagem de faces é ideal para maquinagem de precisão que requer uma remoção mínima de material, proporcionando um acabamento superficial superior.A fresagem periférica é excelente na remoção eficiente de grandes quantidades de material, dando prioridade à eficiência em relação ao acabamento da superfície.
Ideal paraA fresagem em face é preferida quando a precisão é crucial e é necessária uma remoção mínima de material para um acabamento de superfície superior.A fresagem periférica é a escolha ideal quando a prioridade é a remoção substancial de material, enfatizando a eficiência na maquinação.

Como efetuar uma fresagem de facear bem sucedida? Explicação

A fresagem em face utiliza uma série de fresas, incluindo as que têm um ângulo de entrada de 45º, fresas de pastilhas redondas, fresas de esquadria e fresas laterais e de face. A escolha da ferramenta correcta é fundamental para uma produtividade óptima.

Escolha de ferramentas: Explorando as Fresas de Faceamento

É fundamental compreender os conceitos da fresa. O diagrama abaixo ilustra as principais áreas de aplicação, considerando o corte, ap, e a profundidade de avanço por dente, fz.

  • Fresas de faceamento e de mergulho de 10°-65°: Fresas de grande alcance adequadas para operações de fresagem de faceamento e de mergulho.
  • Cortadores de 45°: Ideal para fins gerais, reduzindo as vibrações e permitindo um efeito de desbaste das aparas.
  • Cortadores de 90°: Adequado para componentes de paredes finas e de fraca fixação, proporcionando uma forma de 90° quando necessário.
  • Fresas de inserção redonda e de raio grande: Ferramentas versáteis com excelentes capacidades de rampa para processos exigentes de fresagem de face e operações de perfilagem.
ferramenta de corte para fresagem frontal

Tipos de operações

Fresagem de faceamento intermitente

  • Aplicação: Superfícies com interrupções.
  • Recomendações: Evitar a fresagem frontal sobre as interrupções. Se for inevitável, reduzir a velocidade de avanço em 50% sobre a área interrompida.

Fresagem de faces de secções de paredes finas

Considerações: Principais forças de corte, componentes axiais fracos, seleção da fresa.

Sugestões:

  • Utilizar uma fresa de esquadria de 90° para componentes axiais fracos.
  • Em alternativa, utilizar uma fresa de faceamento de corte leve.
  • Evitar pequenas profundidades axiais de corte (<0,5-2 mm) e utilizar uma fresa de corte grosseiro.

Bordadura de secções finas

  • Posicionamento: Fora do centro para cortes mais suaves.
  • Factores: Passo da fresa, geometria da pastilha e dados de corte inferior.
  • Recomendações: Escolha um raio de inserção mais pequeno, um terreno paralelo mais curto e dados de corte baixos para obter resultados óptimos.

Lista de controlo da candidatura e sugestões

  • Enrolar para cortar: Considere a estabilidade da máquina, o tamanho do fuso e o tipo.
  • Diâmetro do cortador: Manter 20-50% maior do que a peça de trabalho.
  • Formação de aparas: Aplicar a fresagem descendente para uma formação favorável das aparas.

Fresagem de alto teor de alimentação: Ultrapassando os limites da produtividade

Fresagem de alta alimentação implica velocidades de corte superiores a 1.000 m/min e um elevado avanço da mesa, vf. Aplicável em cenários específicos, exigindo considerações distintas.

Escolha de ferramentas

  • Profundidade máx. Profundidade de corte (ap): 1,2-2 mm.
  • Diâmetro do cortador (DC): 25-160 mm.
  • Materiais: Adequado para vários materiais.

Cortadores de alta alimentação

  • Fresas de faceamento de alto avanço produtivas com um ângulo de entrada de 10°.
  • Altas taxas de avanço em pequenas profundidades de corte.
  • Optimizado para maquinação a alta velocidade de aço endurecido.
  • Ideal para desbaste a semi-acabamento de contornos e configurações assimétricas.

Cortadores de inserção redonda

  • Aumento do efeito de desbaste das aparas no corte axial reduzido.
  • Adequado para várias condições.
  • Cortadores de uso geral para condições difíceis ou ligeiras.

Como aplicar a fresagem de alto teor de alimentação?

  • Fresas com pequeno ângulo de entrada: Aumenta drasticamente a alimentação com o efeito de desbaste das aparas.
  • Dimensões, mm (iC, R, b, ap, x): Assegurar um ângulo de entrada baixo e reduzir a espessura das aparas.

Fresagem de faces para trabalhos pesados: Conquistando desafios difíceis

Tacos de fresagem de faceamento para trabalhos pesados fresagem em bruto de materiais pesados, exigindo ferramentas robustas capazes de suportar temperaturas e forças elevadas.

Escolha de ferramentas

Ângulo de entrada (κr): 60° para um desempenho ótimo.

Inserções redondas: Profundidade máxima de corte de 13/18 mm.

Fresas de 60° para trabalhos pesados

  • Manuseamento eficiente da ferramenta para tempos de paragem curtos.
  • Capacidade de corte até 18 mm para remoção de metal e maquinação de superfícies irregulares.
  • Elevada produtividade com taxas de avanço de 0,4-0,7 mm por dente.

Fresas de 45-90° para trabalhos médios

  • Capacidade de corte mais leve.
  • Profundidades de corte de 6-8 mm numa gama de avanço de 0,2-0,6 mm.
  • Primeira escolha para fresagem de faceamento e de ombro para trabalhos médios.

Cortadores de pastilhas redondas grandes

  • Cortador para trabalhos médios com arestas fortes para condições difíceis.
  • Oito arestas de corte para um desempenho ótimo.
  • A profundidade máxima de corte é de 10 mm.

Como aplicar a fresagem de faces para trabalhos pesados?

  • A entrada no corte é crítica; programar para rolar para o corte.
  • Considerações sobre a posição e o tamanho da fresa para passagens múltiplas e um acabamento superficial ótimo.
  • Tenha em atenção as temperaturas elevadas; mantenha a evacuação das aparas para prolongar a vida útil da ferramenta.

Acabamento com pastilhas de limpa para-brisas

Escolha de ferramentas

Ângulo de entrada (Kr): 45°, 65°, 90°.

Acabamento da superfície (Ra): < 1,0 para vários materiais.

Inserções de rebordo do limpa para-brisas

  • Estão disponíveis diferentes comprimentos e versões.
  • Classes para a maioria dos materiais de peças de trabalho.
  • Assentos de inserção ajustáveis para aplicações específicas.

Aplicação

  • Aumentar o avanço 2-3 vezes com as pastilhas alisadoras para melhorar a qualidade da superfície.
  • Utilizar alta velocidade de corte, fluido de corte ou névoa de óleo para diferentes materiais.
  • Compensar a excentricidade axial com a superfície alisadora coroada para uma superfície sem degraus.

4 dicas importantes para aumentar a eficiência da fresagem de facas

Para garantir processos de fresagem de faces sem problemas e obter resultados óptimos, considere as seguintes dicas práticas:

1. Seleção da Fresa para Precisão

A escolha da fresa correcta é fundamental para uma fresagem de faceamento bem sucedida. Adapte a sua seleção com base nas características do material, no acabamento de superfície pretendido e na mmáquina de fresar utilizadas. Opte por pontas de corte com arestas afiadas, menos dentes e um ângulo de inclinação positivo, o que é ideal para operações de acabamento mais refinadas.

2. Afinação fina dos parâmetros de corte

A otimização dos parâmetros de corte é fundamental para equilibrar a eficiência e a qualidade. Ajuste fino da velocidade do fuso, velocidade de avanço e profundidade de corte de acordo com as suas necessidades de maquinagem.

Embora as velocidades mais elevadas do fuso e o aumento das taxas de avanço aumentem o rendimento, tenha cuidado para não comprometer a precisão. Parâmetros agressivos podem levar a uma qualidade inferior, precisão diminuída, má acabamento da superfíciee desgaste acelerado da ferramenta.

3. Atenuação das vibrações para um acabamento de qualidade

As vibrações ameaçam o acabamento da superfície e a longevidade da ferramenta, podendo causar a quebra da ponta. Para contrariar esta situação, dê prioridade a uma fixação eficaz da ferramenta e assegure uma rigidez robusta da máquina/peça de trabalho. A minimização das vibrações melhora a qualidade da superfície ao reduzir a vibração durante a fresagem de topo.

4. Implementação de um arrefecimento eficiente

O arrefecimento adequado é crucial para evitar a acumulação de calor e de aparas na ferramenta de corte. Utilize um líquido de refrigeração adequado para facilitar a dissipação eficiente do calor durante o corte. Um sistema de arrefecimento eficaz prolonga a vida útil da ferramenta e remove rapidamente as aparas, contribuindo para um melhor acabamento da superfície.

Conclusão

Neste guia, aprofundámos a fresagem de alto avanço, explorando o seu potencial para aumentar a produtividade e a precisão, e desmistificámos a arte de acabamento com inserções de limpa para-brisas para um acabamento perfeito da superfície.

Lembre-se de que a escolha das ferramentas correctas, o ajuste das definições de corte e a estabilidade da máquina são os seus aliados neste processo fresagem frontal aventura. Independentemente do seu nível de experiência, o nosso guia simplifica a fresagem em face, dando-lhe o conhecimento e a confiança para utilizar eficazmente este método.

Armado com estas dicas simples, mas poderosas, está pronto para elevar o seu jogo de fresagem de faces. A precisão na fresagem não é apenas uma competência; é a sua jornada para se tornar um mestre da maquinagem.

Dito isto, se ainda estiver preso em algum lugar e precisar de ajuda profissional, Prototool está ao seu lado! Conte com os nossos fabricantes profissionais na Prototool para uma fresagem fiável, eficiente e atempada e para a personalização de Serviços de fabrico CNC para responder a todas as necessidades. Entre em contacto hoje mesmo!

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Periférico Milling
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Taking Face Milling to the Next Level: Everything You Need to Know appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/face-milling/feed/ 0
Otimização da maquinagem CNC: Um mergulho profundo no mundo da fresagem em rampa https://prototool.com/pt/ramp-milling/ https://prototool.com/pt/ramp-milling/#respond Wed, 13 Dec 2023 02:14:41 +0000 https://prototool.com/?p=16181 Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling
Prototool

When considering precision machining, mastering advanced techniques is not just a skill—it’s a necessity. One such advanced CNC machining technique that should be considered to cater to certain manufacturing needs is “ramp milling.” Why is this essential? Mainly because it offers a unique blend of efficiency and precision. This article will unravel all things ramp […]

The post Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling appeared first on Prototool written by Prototool.

]]>
Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling
Prototool

Ao considerar maquinagem de precisão, mastering advanced techniques is not just a skill—it’s a necessity. One such advanced CNC machining technique that should be considered to cater to certain manufacturing needs is “ramp milling.” Why is this essential? Mainly because it offers a unique blend of efficiency and precision.

This article will unravel all things ramp milling to help you achieve the same efficiency and precision in your production processes. So, without any delay, let’s explore further.

A Brief Overview of Ramp Milling

Ramping is a dynamic machining method that entails a ferramenta de corte‘s simultaneous radial and axial motion, forging an angular tool path. The primary purpose is to navigate intricate contours seamlessly, especially when crafting closed forms like pockets, cavities, engravingse holes.

Unlike traditional methods, ramping eliminates the need for initial plunges with an end mill or drill, streamlining the machining process.

Now, if you are already well-versed in the basics of machining, understanding and mastering ramp milling operations becomes a pivotal skill. Particularly in micromachining, where precision is paramount, ramping proves indispensable.

ramp milling drawing

The ability to create closed forms without the drawbacks of plunging ensures a smoother, more efficient workflow. Moreover, ramp milling emerges as a reliable solution in the delicate world of micromachining, where even the slightest imbalance in cutting forces can spell tool failure.

Exploring Ramping Toolpaths: Linear vs. Circular

Linear Ramping

Linear ramping, a widely employed and efficient approach, is a game-changer in machining closed slots, pockets, and cavities. This method, also known as two-axis ramping, eliminates the need for a drill, streamlining the machining process. It involves simultaneous feeding in the axial (Z) and one radial direction (X or Y).

Circular Ramping

Alternatively, Circular ramping, helical interpolation, spiral interpolation, ou orbital drilling introduces a spiral motion along a circular path (X and Y), combined with axial feed (Z) at a defined pitch.

This method is always preferred over linear ramping, ensuring a smoother process with reduced radial engagement. The result is pure down-milling and enhanced chip evacuation, particularly when executed with a counterclockwise rotation.

Elevação das indústrias através da precisão na maquinação CNC e moldagem por injeção

Understanding Starting Ramp Angles

Another key consideration for effective ramp milling processes is starting ramp angles. A recommended range of 3° to 10° ensures optimal results for soft or non-ferrous materials.

Conversely, a narrower range of 1° to 3° is advised when dealing with hard or ferrous materials. These starting ramp angles serve as a guide, allowing manufacturers to navigate the intricacies of ramp milling with precision and confidence.

Successful Ramping Techniques

Now that we understand the key facets of ramp milling operation, let’s explore the tips and considerations for successful ramp milling:

Linear Ramping Tips

  • Understanding Simultaneous Cutting: Three critical cutting processes occur simultaneously during linear ramping. These are:
    • Periphery cutting with the leading insert.
    • Bottom cutting with the leading insert.
    • Bottom cutting with the trailing insert.
  • Dealing with Cutting Forces: Cutting forces generated during linear ramping are axial and radial, exerting additional stress on the tool, especially during full slotting operations.
  • Stress Reduction Recommendations: To mitigate stress and ensure optimal performance, it’s advisable to:
    • Reduce the feed to 75% of the normal rate.Implement the use of fluido de corte to facilitate effective chip evacuation.
    • Limit linear ramping to narrow slots measuring less than 30 mm wide, especially if access to circular ramping is restricted.

Circular Ramping Considerations:

  • Cutter Diameter Selection: Selecting the appropriate cutter diameter ensures alignment with the desired hole size. This ensures that the insert cuts over the center line of the hole, avoiding any misalignment issues.
  • Pitch (P) Considerations: The pitch (P) should not exceed the maximum permissible pitch for the chosen cutter concept. This value depends on the hole diameter, cutter diameter, and the ramp angle being utilized.
  • Feed Rate Adjustments: O feed rate is contingent on the peripheral feed rate, calculated as Dvf. However, it necessitates adjustments for tool center feed, ensuring that the programmed cutter path aligns with the desired milling outcome.

Tool Path Correction and Optimization

  • Progressive Ramping for Enhanced Productivity: Opting for progressive ramping, involving multiple passes, proves beneficial for increasing productivity compared to single-pass ramping strategies.
  • Maximizing Ramp Angles with Tool Diameter Considerations: Adjustments for maximum ramping angles should be made, considering factors like the insert radius and tool diameter. This makes sure that the work is accurate and reduces the chance of damaging the tools.
  • Circular External Ramping for Improved Efficiency: Employing circular external ramping with increased tool center feed for external milling allows for a smaller radial depth (ae) and higher cutting speed. This contributes to improved efficiency and machining performance.

Can you Do Linear Ramping Into Solid Stock?

Absolutely! Linear ramping into solid stock presents a unique challenge and opportunity in machining. This method, involving a full-width ramping approach, demands careful consideration for optimal cutting speeds and feeds.

The End Mill, engaging with the workpiece at 360 degrees, requires reduced cutting speed to preserve the cutting edges and prevent damage.

Understanding Speeds and Feeds in Ramping

Since ramping differs significantly from regular milling, adjusting cutting speeds and feeds becomes imperative. Hence, you can also consider 50-80% of the normal cutting speed. In this approach, the feed should align with the provided table for ramp chip load adjustment based on the ramping angle.

  • 0-2.5 degrees: 100% of normal feed rate
  • 2.5-5 degrees: 75% of the normal feed rate
  • 5-15 degrees: 50% of the normal feed rate
  • 15-30 degrees: 25% of the normal feed rate
  • 30-45 degrees: 5% of the normal feed rate
ramp milling process

Step-by-Step Ramping Guide: Everything You Need to Know

1. Choose the Right Tool

Selecting a tool tailored to handle cutting forces and facilitate chip evacuation is paramount. Using tools like the Kennametal Mill 1™ shoulder mill or others can help exemplify excellence in ramping and milling within confined spaces.

2. Determine Ramp Angle

O ramp angle choice hinges on tool geometry, material properties, and the intended depth of cut. Seeking advice from a Kennametal expert can provide clarity if uncertainties persist.

3. Program the Tool Path

Efficient milling demands precise tool path programming. Utilize CAD/CAM software ou manual programming to ensure the tool enters the workpiece at the correct angle, adhering to the desired path.

4. Test and Optimize

Once programmed, conduct tests to optimize the milling process. Adjust cutting speed, feed rate, and ramp angle to achieve desired outcomes.

5. Monitor the Process

Vigilance during milling is crucial. Keep a close eye on cutting forces, chip evacuation, and surface finish to ensure a smooth and successful operation.

Helical Interpolation vs. Linear Ramping: Are They Different?

Understanding the distinctions between helical interpolation and linear ramping is pivotal in ramping. What are these two terms? Let’s briefly explore below.

Helical Interpolation

  • Ideal for tighter pockets.
  • The cutter moves continuously, distributing cutting forces across the X, Y, and Z axes.
  • Precise machining for holes, threads, and grooves.

Linear Ramping

  • Involves tool movement along the X, Y, and Z axes.
  • The entry angle dictates the cut direction.
  • A usual way to start is by using climb milling, where the cutter turns in the same direction as the table moves.

When is Ramp Milling the Answer?

Once you understand how to conduct ramp milling operations, making the most of this milling technique at the right time is important. After all, this milling approach introduces improved chip clearance during extended linear ramping motions.

But there are some downsides to keep in mind, like potential constraints imposed by pocket geometry restricting the feasibility of long linear ramping moves.

Considering both advantages and disadvantages, you can ideally practice ramp milling operations in the following situations:

  • Pocket Constraints Exist: In scenarios where traditional linear milling faces limitations due to pocket geometry, ramp milling offers an alternative that optimizes chip clearance.
  • Solid Stock Machining is Crucial: Engaging with solid stock demands a nuanced approach. Ramp milling, with its tailored speeds and feeds, ensures the preservation of cutting edges and prevents damage.
  • Efficiency and Precision are Non-Negotiable: Whether achieving intricate designs or maintaining tool longevity, ramp milling is a versatile technique that marries efficiency with precision.

Conclusão

This guide serves as a compass, navigating manufacturers through the intricacies of ramp milling and providing step-by-step insights for both linear and circular ramping methods. From understanding speeds and feed adjustments to choosing the right tools and optimizing tool paths, manufacturers gain a comprehensive understanding of the process.

Still have questions? Prototool stands as your reliable ally. As a professional CNC manufacturing company, Prototool brings expertise and state-of-the-art technology. Should you seek assistance, advice, or cutting-edge solutions for your machining needs, Prototool is poised to be your partner in success.

The post Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/ramp-milling/feed/ 0
Torneamento interno vs. Torneamento externo: Compreender a diferença e a utilização https://prototool.com/pt/internal-turning-vs-external-turning/ https://prototool.com/pt/internal-turning-vs-external-turning/#respond Mon, 11 Dec 2023 03:04:37 +0000 https://prototool.com/?p=15904 Internal Turning vs. External Turning: Understanding the Difference and Usage
Prototool

Descubra a comparação entre o torneamento interno e o torneamento externo a partir dos mecanismos, seleção de ferramentas e estratégias avançadas.

The post Internal Turning vs. External Turning: Understanding the Difference and Usage appeared first on Prototool written by Prototool.

]]>
Internal Turning vs. External Turning: Understanding the Difference and Usage
Prototool

As we aim to manufacture the ideal products, we need smart ways to handle the challenges that come with it. Now, imagine making parts exactly how you want them. How can you do that? This is where internal and external turning comes in. They’re like problem-solving tools for making products precisely as they should be.

Obviously, we all want to make parts that comply perfectly with our manufacturing requirements, but it’s not easy. The usual ways of manufacturing items sometimes don’t work well, especially when dealing with tight spaces, different materials, and specific measurements.

But guess what? Internal and external turning are like secret weapons that help us solve these problems. They’re special ways of doing things that guide us through the tricky parts of modern making. And, if you’re planning to implement these approaches to make your manufacturing processes more accurate, trust us – you’re making the right decision.

In this guide, we’ll help you better understand the use, mechanism, and potential of internal and outer diameter turning so it’s easier to implement these mechanisms whenever needed. Let’s begin exploring now!

External Turning Mechanism

Exterior turning is a crucial process focused on shaping the outer surface of a part to meet precise dimensional standards and achieve a smooth surface finish.

Espetáculo de torneamento externo

In this mechanism, ordinary cylindrical turning tools come into play, each designed with specific main declination angles to address various turning scenarios.

Tool Selection

  • Ordinary Cylindrical Turning Tools: These tools, categorized by main declination angles such as 95°, 90°, 75°, 60°, and 45°, offer flexibility in handling different parts. The choice between 90° and 95° tools is ideal for slender shafts, while 75°, 60°, and 45° tools excel in turning short and thick outer circles. Notably, 45° tools can also perform chamfer turning.
  • Negative-Angle Blade Turning Tools: Negative-angle blades, known for their economic efficiency, outshine their positive-angle counterparts. They are particularly beneficial for large back-feeding and processing with substantial feed amounts. The larger size of negative-angle blades enhances their versatility, and their tip strength surpasses that of positive-angle blades.

Considerações

Outer surface turning involves navigating the dynamics of axial and radial forces during cutting. The choice of tool angles becomes critical in determining the efficiency of the process.

The nuanced strengths and lengths of different blade shapes impact the overall performance, making it essential to align the tool selection with the specific demands of each turning operation.

Internal Turning Mechanism

Another turning approach often used in injection molding and CNC manufacturing processes is internal turning. Let’s explore the key considerations of this hole-turning method.

Salão de Torneamento Interno

Características

Internal turning or inner diameter turning, distinct in its approach, focuses on shaping inner holes while dealing with unique challenges. The semi-closed nature of the process makes it challenging to observe chip evacuation, influencing the overall processing quality. Deep hole cutting introduces vibrations in the arbor, necessitating specialized strategies.

Tooling Strategies

  • Carbide Drill Arbor for Small-Diameter Hole Cutting: To address the challenges posed by small-diameter hole cutting, employing a carbide drill arbor proves effective. This tooling strategy enhances precision and reliability in these scenarios.
  • Vibration Arbor for Medium Diameter and Above: Managing vibrations in medium-diameter hole cutting becomes crucial. Here, a dedicated vibration arbor comes into play, mitigating issues related to tool wear and ensuring a smoother cutting process.

Considerações

Internal turning requires a keen understanding of chip evacuation dynamics and the impact of hole depth on tool overhang. The choice of tools is restricted by the hole diameter and part length, necessitating careful consideration based on the specific requirements of each inner diameter turning operation.

Understanding Internal Turning’s Intricacies

Influencing Factors of Internal Turning Operation

  • Tool Overhang Challenges: Unlike external turning, the length of the CNC turning part and the size of the toolbar significantly affect tool overhang in hole turning. This dynamic demands careful consideration, as long overhangs may lead to deflection and vibrations.
  • Critical Cutting Forces: The direction and magnitude of cutting forces play a pivotal role in internal surface turning. Achieving minimal vibration and enhanced machining quality requires a keen understanding of tangential and radial cutting forces. The tool’s back angle becomes crucial, especially in small-diameter turning holes.
  • Chip Evacuation and Clamping Dynamics: Challenges such as poor chip evacuation, improper clamping, and tool-related factors can impact internal diameter turning. Optimal solutions involve strategic tool nose radius selection, effective chip removal methods, and stable clamping techniques.

Considerations for Machining Quality Improvement

  • Tool Nose Radius Selection: Choosing a small nose radius is key to minimizing radial and tangential cutting forces. The nose radius should be slightly less than the cutting depth for optimal results, ensuring a stronger cutting edge, improved surface texture, and uniform pressure distribution.
  • Tool Groove Influence: The groove type of the cutting tool plays a decisive role in internal turning. Positive rake angle groove types with sharp cutting edges and high strength are preferred for machining inner holes.
  • Cutting Edge Angle Consideration: The cutting edge angle significantly affects radial, axial, and composite forces. Selecting an angle close to 90° and not less than 75° is recommended to balance axial and radial cutting forces.
  • Tool Treatment Impact: The rounding of the cutting edge influences cutting force. Uncoated tools exhibit smaller rounding than coated ones, impacting flank wear. Considerations for long tools overhanging and machining small holes are crucial.
  • Clamping Stability: The stability of cutting tools and turned components relies on effective clamping. Achieving stability involves factors like surface finish, hardness, and clamping methods, emphasizing overall support for optimal results.
  • Efficient Chip Removal: Chip removal significantly influences machining effects and safety, especially in deep hole and blind hole processing. Internally cooled tools, right-cutting fluids, and compressed air for through-hole machining are recommended for effective chip control.

Internal Turning’s Precision Paradigm

Hole turning’s meticulous approach achieves tight tolerances and intricate details within workpieces, ensuring the internal features meet specifications. Surface finish and dimensional accuracy are meticulously controlled, catering to industries where microns matter.

External Turning’s Exterior Precision

Em surface turning, the focus lies on the workpiece’s exterior surfaces. The cutting tools, positioned outside the workpiece, sculpt the outer contours, ensuring dimensional accuracy and surface finish. Challenges include managing tool wear and optimizing cutting speeds for consistent results across varied materials and geometries.

External Turning’s Backbone Role

External turning is the backbone of manufacturing, catering to various components across industries. Its versatility shines from turning shafts in automotive applications to creating structural elements in construction. Outer diameter turning plays a pivotal role in producing components that form the backbone of various systems.

Advancements in Turning Technologies

The evolution of internal surface turning is a testament to its resilience in adapting to modern challenges.

A comparação mais fácil de compreender entre o torneamento externo e o torneamento interno

Advancements in materials, including superalloys and composites, have pushed the boundaries of traditional machining. Internal turningA capacidade da empresa para conceber soluções para estes materiais de vanguarda solidifica o seu papel como interveniente-chave no fabrico moderno.

  • Adaptabilidade às superligas: O aumento das superligas em várias indústrias, especialmente a aeroespacial, exigiu uma evolução da maquinagem. Internal turning demonstrou uma adaptabilidade sem paralelo a estes materiais de elevado desempenho, criando componentes complexos com resistência e durabilidade superiores.
  • Lidar com os desafios dos compósitos: Os compósitos colocam desafios únicos na maquinação devido à sua natureza heterogénea. Com a sua abordagem centrada na precisão, internal turning surgiu como uma solução fiável para a criação de componentes a partir de materiais compósitos avançados. A capacidade de navegar nas complexidades dos compósitos sublinha a sua importância no fabrico contemporâneo.

Externo A dar passos tecnológicos

A adoção de avanços tecnológicos está no centro da surface turning processo. À medida que o sector avança, external turning mantém o ritmo, integrando a monitorização em tempo real e as ferramentas adaptativas, elevando assim as suas capacidades a novos patamares.

  • Monitorização em tempo real para garantia de precisão: A integração de sistemas de monitorização em tempo real garante que cada corte cumpre os padrões de precisão pré-determinados. O feedback contínuo permite ajustes instantâneos, atenuando os desvios e melhorando a precisão global da external turning processos.
  • Ferramentas adaptativas para maquinagem dinâmica: External turningA adoção de ferramentas adaptativas por parte da empresa significa uma mudança de metodologias estáticas para abordagens de maquinação dinâmicas. As ferramentas que se podem adaptar às condições variáveis em tempo real optimizam a vida útil da ferramenta, reduzem o desgaste e contribuem para a eficiência de todo o processo de maquinação.
  • Manutenção Preditiva para a Continuidade Operacional: A manutenção preditiva, baseada na análise de dados e na aprendizagem automática, tornou-se uma pedra angular na torneamento da superfície exterior. Ao antecipar o desgaste da ferramenta e potenciais problemas, os maquinistas podem resolver proactivamente os problemas, garantindo operações ininterruptas e uma vida útil prolongada da ferramenta.
  • Maquinação com base em IA para uma maior eficiência: A Inteligência Artificial (IA) está a ser introduzida na external turningoferecendo uma visão inteligente dos processos de maquinagem. A maquinação orientada por IA optimiza os percursos das ferramentas, os parâmetros de corte e a eficiência global, maximizando a produtividade ao mesmo tempo que mantém padrões de qualidade rigorosos.

Prototool: O seu aliado profissional de fabrico

Enquanto os fabricantes se debatem com as complexidades dos componentes modernos, Prototool surge como o farol da experiência, oferecendo soluções profissionais de fabrico CNC que transcendem o comum.

Assim, se estiver a enfrentar os desafios da evacuação de aparas, acessibilidade de ferramentas e geometrias intrincadas, os nossos profissionais da Prototool aperfeiçoaram meticulosamente a sua arte para enfrentar estes desafios de frente.

Aqui, garantimos que os seus componentes são fabricados e trabalhados com precisão. Quer se trate de masterização torneamento interno, navegar em espaços confinados com elegância, ou orientado para a eficiência external turningAs nossas soluções de fabrico CNC e de moldagem por injeção são concebidas para exceder as expectativas.

Contacte-nos hoje para obter mais informações e assistência.

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Periférico Milling
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Internal Turning vs. External Turning: Understanding the Difference and Usage appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/internal-turning-vs-external-turning/feed/ 0
Para além do básico: Explorando o Torneamento Cônico Avançado em Usinagem https://prototool.com/pt/taper-turning/ https://prototool.com/pt/taper-turning/#respond Mon, 11 Dec 2023 02:25:03 +0000 https://prototool.com/?p=15897 Beyond Basics: Exploring Advanced Taper Turning in Machining
Prototool

Explorar o torneamento cónico em tornos, incluindo cálculos, métodos e técnicas-chave para obter peças de elevada qualidade no fabrico CNC.

The post Beyond Basics: Exploring Advanced Taper Turning in Machining appeared first on Prototool written by Prototool.

]]>
Beyond Basics: Exploring Advanced Taper Turning in Machining
Prototool

A fundamental operation conducted on a lathe, taper turning is a craft that orchestrates a subtle dance of dimensions along the length of a cylindrical workpiece.

In this intricate process, the once uniform diameter gracefully transforms into a tapered shape, unveiling a meticulous creation where one end boasts a grander diameter than its counterpart.

At its core, taper turning is a tale of angles, where the cutting tool’s journey takes center stage. The angle adjustment becomes the maestro’s baton, dictating the symphony of taper rates.

A steeper angle commands a swift metamorphosis in diameter, while a gentler angle choreographs a more gradual transformation. To help you better understand, this article will explore taper turning techniques e lathe operations in depth. Keep reading to learn all about it!

finished parts by taper turning tech

How Taper Turning Works on a Lathe Machine

The lathe machine, often called the backbone of machining, has evolved significantly, leading to advanced CNC turning centers that boast exceptional precision and accuracy. Despite the rise of modern CNC machines, the conventional lathe machine remains widely used, valued for its cost-effectiveness in machine shops worldwide.

How Taper Turning Works on a Lathe Machine

Importance of Taper Turning

Taper turning, a fundamental operation on a lathe, holds immense importance in manufacturing. Tapers are crucial in creating tight and precise fits, especially when joining two components.

Manufacturers recognize the significance of accurate taper turning, making it a staple in various production processes.

Evolution of Lathe Machines

The evolution of lathe machines has paved the way for seamless taper turning, even in CNC turning machines. Incorporating taper turning into a lathe, whether traditional or CNC, offers a user-friendly experience for lathe makers and turners alike.

Key Variables in CNC Taper Turning

It involves grasping essential variables in the process. Cutter orientation, feed rate, depth of cut, and cutting speed are the primary elements that come into play.

These variables collectively determine the precision and success of the operations on a CNC lathe.

The CNC Taper Turning Formula

The core of calculations revolves around the taper angle (alpha).

When dealing with Taper Per Foot (TPF), you must use the formula:

Alpha = arctan(TPF/12).

The subsequent step delves into calculating the radius (r) at each point along the taper’s length. The radius at any point “x” in the taper’s journey is determined by:

r = r0 – (x TPF).

Here, `r0′ represents the initial radius, and ‘x’ signifies the distance traveled along the taper’s length.

The calculation incorporates the relationship for CNC machines with incremental values:

x = r0/F (Feedrate).

This expression serves as a general guideline, shedding light on the machine’s behavior under diverse working conditions. Understanding these calculations empowers machinists to navigate the intricacies of CNC taper turning with precision and confidence.

Types of Taper Turning Methods

1. Tailstock Set-Over Method

Applicability

The Tailstock Set-Over Method is a specialized technique suited for crafting small top angles, providing a meticulous solution for the maquinagem de precisão de tapered profiles. Machinists often use this method when dealing with intricate components that demand accuracy.

Limitation

Despite its precision, this method is confined to external tapers only, making it suitable for scenarios where only the outer surface needs tapering. This limitation underscores the importance of choosing the right method for the specific machining requirements.

Procedure

  • Alignment Adjustment: Initiate the process by carefully adjusting the tailstock from its regular position. This step ensures that the tailstock is set in a way that aligns with the taper requirements.
  • Offset Calculation: Precision is maintained by calculating the offset using the formula O = (Taper × L)/2000. This calculation is crucial for achieving the desired taper with accuracy.
  • External taper Turning: Execute the external taper turning with the clamping mechanism loosened for offsetting. This controlled approach ensures that the final product meets the specified taper requirements.
  • Machinist Tips: Mastery of this method unlocks external taper precision and facilitates a power feed for efficient machining. Machinists can leverage this feature to achieve a smooth and controlled taper-turning process.
Lathe that is working on taper turning

2. Compound Rest Method

Applicability

The Compound Rest Method emerges as a versatile technique suitable for crafting small and steep tapers, showcasing machining excellence across various applications. Machinists often turn to this method when faced with creating diverse taper profiles.

Procedure

  • Compound Rest Setup: Set the compound rest at a specific angle, aligning it precisely with the center line of the workpiece. This step establishes the foundation for accurate taper turning.
  • Tool Alignment: Lock the compound rest into position, ensuring the cutting tool is precisely aligned at the center for optimal results. This meticulous alignment is critical for achieving the desired taper.
  • Taper Turning: Achieve taper turning by manually turning the handle of the compound rest. This hands-on approach allows machinists to maintain control and precision throughout turning.
  • Turning Techniques: This method turns both internal and external tapers, with the compound rest angle calculated by Tan θ = (D-d)/(2L). This calculation emphasizes the importance of precision in turning techniques.

3. Taper Turning Attachment Method

Applicability

O Torneamento cónico Attachment stands as a precision tool designed for modern lathes, ensuring machining precision in diverse lathe operations. Machinists leverage this attachment to handle a variety of taper-turning scenarios with efficiency.

Procedure

  • Attachment Setup: Mount the attachment behind the carriage, showcasing its adaptability and relevance in modern lathe operations. This setup allows for seamless integration with the lathe.
  • Workpiece Holding: Hold the workpiece between centers or in a chuck while the attachment facilitates taper turning without tailstock offsetting. This flexibility in workpiece holding enhances the attachment’s usability.
  • Swiveling Guide Bar: Swivel the guide bar at a 10° angle, showcasing the attachment’s ability to handle varying taper angles easily. Machinists can adjust the guide bar to accommodate different taper requirements.
  • Taper Turning Mastery: Professionals can achieve both external and internal tapers with this attachment, maintaining the alignment of lathe centers. The Torneamento cónico Attachment becomes a masterful tool in the machinist’s repertoire.

4. Form Tool Method

Applicability

The Form Tool Method, with its straight form tool, is a technique meticulously designed for short-length tapers, offering precision in turning methodologies. Machinists often employ this method for components that demand short, well-defined tapers.

Procedure

  • Form Tool Setup: Set a straight form tool with a taper angle for the desired form on the workpiece, emphasizing the need for accuracy. Machinists must carefully choose the form tool to match the taper requirements.
  • Direct Feed Operation: Provide a direct feed on the job to ensure the creation of a definite form. This direct feed operation requires a controlled approach to prevent errors in the taper profile.
  • Consideration for Length: Due to the limitations of this method, it is recommended for short-length tapers, underlining the importance of understanding its scope. Length considerations play a crucial role in the success of the taper-turning operation.
  • Precision Machining: While effective, machinists must consider that more force is not generated, making it suitable for specific machining scenarios where short-length precision is paramount.

5. Combining Feeds Method

Applicability

The Combining Feeds Method is an advanced turning technique that engages both longitudinal and cross feeds for diagonal tool movement and showcases a high level of machining precision. Machinists use this method when aiming for intricate taper profiles with advanced turning requirements.

Procedure

  • Simultaneous Feed Engagement: Engage longitudinal and cross feeds simultaneously, allowing the tool to travel along a diagonal path. This simultaneous engagement adds a layer of complexity suitable for advanced scenarios.
  • Trajectory Adjustment: Adjust feed rates and gears to optimize the trajectory of the tool, underlining the need for meticulous adjustments for precision machining. Machinists must carefully calibrate feed rates to achieve the desired taper.
  • Turning Methodologies: This advanced method showcases the potential of combining feeds for diagonal tool movement, emphasizing the importance of feed rate adjustments in achieving precision in turning methodologies. Machinists must employ advanced turning methodologies to master this technique.

Conclusão

Mastery over CNC taper turning calculations becomes a key to unlocking efficiencies and the production of intricate, high-quality parts tailored for diverse industries. The intricacies of this process underscore the pivotal role of accurate calculations in achieving desired outcomes, making it imperative for manufacturers to grasp these calculations.

In conclusion, while CNC taper turning might seem intricate, a profound understanding and hands-on practice can improve efficiency and heightened precision in your machining endeavors. As manufacturing continues to advance, precision is still a top priority. It is a clear example of the industry’s dedication to high-quality machining.

Em Prototool, we stand ready as your reliable partner in CNC manufacturing services. Our commitment to maquinagem de precisão e advanced turning techniques positions us as masters in the craft. Hence, we’re always here to guide you through the efficient process of taper turning to achieve machining excellence. Happy Machining!

Método de torneamentoMétodo de fresagem
Torneamento interno e torneamento externo
Torneamento cónico
Fresagem de ombros
Fresagem lateral
Fresagem de faces
Fresagem em rampa
Fresagem por imersão
Fresagem periférica
Fresagem helicoidal
Fresagem de ranhuras
Fresagem vertical e fresagem horizontal
Fresagem convencional e fresagem trepante

The post Beyond Basics: Exploring Advanced Taper Turning in Machining appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/taper-turning/feed/ 0
Fresagem helicoidal: Um Guia Detalhado https://prototool.com/pt/helical-milling/ https://prototool.com/pt/helical-milling/#respond Tue, 21 Nov 2023 03:28:56 +0000 https://prototool.com/?p=15463 Helical Milling: An In-Depth Guide
Prototool

Aprenda as aplicações da fresagem helicoidal na perfuração, fresagem de contornos e maquinagem de roscas, e como aumenta a precisão no trabalho em metal.

The post Helical Milling: An In-Depth Guide appeared first on Prototool written by Prototool.

]]>
Helical Milling: An In-Depth Guide
Prototool

Introdução à fresagem helicoidal

Fresagem helicoidal é um processo de maquinagem em que a trajetória da ferramenta assemelha-se a uma mola. Durante este processo, o ferramenta de corte segue um percurso helicoidal programado para cortar progressivamente a peça de trabalho, atingindo as dimensões desejadas. A escolha da ferramenta é crucial na fresagem helicoidal. Geralmente, o diâmetro da ferramenta é selecionado para ser 40% a 60% maior do que o tamanho da fresagem e o raio helicoidal da peça de trabalho. O tamanho do centro não cortante da ferramenta afecta significativamente a vida útil de corte da ferramenta. O Avanço do eixo Zou a profundidade de corte, é normalmente cerca de 20% da profundidade de corte normal, mas pode variar consoante o material e as condições de maquinagem específicas. A fresagem helicoidal é frequentemente utilizada para a perfuração inicial e a abertura de furos, especialmente em materiais mais macios. No entanto, é menos preferida para maquinagem de componentes de aço devido ao rápido desgaste da ferramenta, o que afecta significativamente a sua vida útil.

processo de fresagem helicoidal

Fresagem de contorno

Tradicionalmente, fresagem de ranhuras com uma fresa de ranhura é utilizada para maquinar cavidades, o que é menos eficiente. Quando se utiliza fresas de topo para maquinagem de cavidades, a eficiência é maior. No entanto, o mergulho vertical direto com uma fresa de topo pode causar danos significativos tanto na ferramenta como na peça de trabalho. Para resolver este problema, Maquinação CNC utiliza frequentemente a fresagem helicoidal ou rampa técnicas de descida. Programar a ferramenta para descer em espiral ao longo do contorno da cavidade melhora a eficiência da maquinagem e prolonga a vida útil da ferramenta.

Análise da tecnologia de maquinagem de furos

Na fresagem helicoidal, a rotação do fuso da máquina-ferramenta é ajustada para um engate eficaz. A estrutura de movimento é modificada de acordo com a posição de rotação central para métodos de maquinação especializados. Os parâmetros do processo de fresagem helicoidal, tais como velocidade de cortesão controlados para garantir a estabilidade durante o corte. A ferramenta de corte pode sofrer uma pressão significativa e, após a maquinação, a precisão da peça de trabalho é avaliada para determinar o ponto central da ferramenta e a trajetória de corte. Os ajustes são efectuados com base na trajetória de corte e na posição da linha em espiral. Todo o estado de maquinação é ajustado para operações controladas, combinando padrões de corte reais e modos de ferramenta. Esta abordagem poupa tempo de maquinação, melhora a qualidade do processo, reduz a taxa de defeitos e aumenta a eficiência global do componente.

trajetória helicoidal na fresagem helicoidal

Maquinação de roscas

Tradicional fresagem de roscas Os métodos de maquinação utilizam principalmente fresas de rosca para cortar componentes, garantindo a precisão do processo de maquinação. Com o avanço da tecnologia CNC, são utilizados métodos de controlo de máquinas coordenadas de três eixos para o corte de roscas. Esta abordagem moderna à maquinação de roscas oferece vantagens significativas em termos de precisão, eficiência e custo em relação aos métodos tradicionais. Também evita a interferência da estrutura da rosca, da direção e do espaçamento entre roscas adjacentes. Na maquinação mecânica, se a fresa de rosca for utilizada diretamente para criar várias estruturas rotativas, podem ser utilizados métodos de torneamento tradicionais para estruturas complexas. No entanto, o corte CNC oferece maior precisão e permite o ajuste efetivo dos diâmetros das roscas, melhorando significativamente a precisão e a eficiência do processo de maquinagem.

The post Helical Milling: An In-Depth Guide appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/helical-milling/feed/ 0
Desbloquear a precisão: A arte do superacabamento no fabrico https://prototool.com/pt/super-finishing/ https://prototool.com/pt/super-finishing/#respond Tue, 21 Nov 2023 02:22:14 +0000 https://prototool.com/?p=15459 Unlocking Precision: The Art of Super-Finishing in Manufacturing
Prototool

Saiba mais sobre a aplicação do superacabamento, desde o sector aeroespacial ao médico, e compreenda como revolucionam a precisão.

The post Unlocking Precision: The Art of Super-Finishing in Manufacturing appeared first on Prototool written by Prototool.

]]>
Unlocking Precision: The Art of Super-Finishing in Manufacturing
Prototool

Super-finishing is a specialized technique known for its exceptional precision and is vital for enhancing component quality and performance. Originating around the 1930s, this method was developed to refine a component’s surface finish while improving micro-contour accuracy, including roundness, straightness, and cylindricity.

This article will take you through the intricate process of super-finishing, revealing its pivotal role in achieving mirror-like finishes and elevating performance across industries beyond racing motorcycles.

Let’s start exploring!

Understanding the Versatility of Super-Finishing

Super-finishing is a game-changer not limited to a single industry. It holds remarkable potential across various sectors, from medical to aerospace.

Here, we will explore the broad applications of super-finishing, which extends beyond automotive parts to encompass intricate components such as hip and spine implants and critical aerospace elements, including turbine e landing gear parts.

Super-Finishing’s Universal Application

This remarkable technique can be used in virtually any OD (outer diameter) application where precision matters, involving removing minute stock amounts, typically ranging from 0.002 to 0.005 mm from the diameter.

While it’s most commonly associated with steel, super-finishing isn’t limited to this material; it extends to exotic alloys, titanium, alumínio, and even delicate substances like glass and ceramic.

The Cold Material Process

One of the standout features of super-finishing is that it’s a cold material process. It eliminates the thermally damaged layer left behind by previous abrasive machining operations such as grinding. The absence of this damaging thermal effect significantly enhances component durability.

Extending the Life of Components

To put this into perspective, consider the bearing surfaces of engine crankshafts or camshafts. Without super-finishing, these components would be stressed and worn, leading to engine breakdowns every 20,000-30,000 miles.

However, with super-finishing, the longevity of today’s engines increases significantly, with lifespans often reaching 200,000-300,000 miles.

The Magic of Super-Finishing

The secret to super-finishing’s effectiveness lies in the depths of the cut. Traditional turning or grinding processes might remove material depths ranging from 50-100 microns or more, generating substantial heat.

Yet, super-finishing works differently, removing just 1-2 microns of stock on the radius while requiring significantly less energy. This cold ultra-precision machining process revolutionizes precision and durability, making it an indispensable technique in modern manufacturing.

Your Guide to Selecting the Right Finishing Process

Em finishing processes, the best choice varies depending on the particular use and the results you want to achieve; there’s no single solution that works for everything. To make a well-informed decision, it’s crucial to understand the differences between common ultra-fine finishing methods:

  • Flat Lapping: This technique is tailored for refining flat surfaces by employing loose abrasives. It significantly improves surface finish while also enhancing part flatness. So, if your application requires precisely flat surfaces, flat lapping is an excellent option.
  • Honing: Honing focuses on enhancing the finish of internal diameters using fixed abrasives. Unlike many other processes, honing is a cold process that generates no heat. This results in improved surface finish and micro-contour accuracy. It’s the method of choice when you need precise interior finishing without the risk of heat-induced damage.
  • Microfinishing/ Superfinishing: For exterior diameters and faces, microfinishing and superfinishing come into play. These methods employ fixed abrasives and, importantly, are also cold processes. The primary objective is to enhance both surface finish and micro-contour accuracy. Therefore, these processes are invaluable when you require precise, high-quality surface finishing for external features.
  • Polimento: Polishing, on the other hand, concentrates on refining outside features using loose abrasives. While it provides flexibility in various applications, it’s not a cold process, and heat generation can be a concern. Polishing achieves a commendable surface finish but may compromise micro-contour accuracy in the process. It is ideal when aesthetics are your top priority, mainly if part geometry isn’t critical.
  • Superfinishing with Tape: This approach combines the precision of superfinishing with the advanced “D-flex” band technology to achieve consistent results, even when dealing with varying diameters. Using tape in superfinishing ensures that you can maintain precision throughout the process.

What is the Stream Finishing Process?

Stream finishing is an ultra-precision machining method that employs fine-grain media with a high density, typically much smaller than those used in conventional vibratory-finishing processes.

This specialized process revolves around immersing workpieces, either singly or in groups, within a chamber filled with abrasive media. The abrasive media combines tensides and corrosion-protective materials, resulting in a mixture that resembles wet sand.

Here, the key to stream finishing is the intricate interaction between the workpiece and the abrasive media. The workpiece or workpieces are mounted on a workpiece holder and immersed in the abrasive media within the chamber.

As a result, the process is executed at specific angles and rotations. However, keep in mind that the speed of both the workpiece and the abrasive media, as well as the immersion angle of the parts, are all highly dependent on the specific application.

8 Key Benefits of Stream Finishing

1. Exceptional Surface Smoothness

Stream finishing can achieve surface smoothness values as fine as 0.01-micron Ra, which is particularly suitable for high-precision components like gears. This remarkably smooth surface reduces friction, leading to less heat generation and noise during operation.

2. Extended Component Life

One of the significant advantages of stream finishing is its ability to eliminate the need for the prolonged running-in of engines and gearboxes. This not only extends the life of the components but also reduces oil contamination. In many cases, it has led to a remarkable increase in the interval between oil changes.

3. Significant Reduction in Heat and Noise

By significantly reducing heat generation and noise emissions compared to conventional grinding methods, stream finishing is especially valuable for critical applications. It not only enhances performance but also contributes to a quieter and cooler operational environment.

4. Minimized Micropitting

Stream finishing effectively reduces micro pitting, a common issue with gear wheels, often leading to premature wear and damage. Micropitting occurs when the lubricating film between gear teeth breaks down at localized points. This is a critical benefit for components subject to high wear and friction.

5. Rapid Processing for High-Value Parts

Stream finishing is an efficient process, particularly suited for high-value parts. Unlike mass finishing methods that may take hours, ultra-fine finishing typically takes a minute or less to achieve the desired results.

6. Two-Stage Processing: Grinding and Polishing

The process can be divided into two stages, beginning with a grinding process and followed by polishing. The initial stage removes material, while the polishing step further refines the surface. This combination leads to a reduction in peak heights while maintaining essential surface valleys for improved lubrication.

7. Attractive, Polished Appearance

Stream finishing provides components with an attractive, mirror-like appearance. This holds even for intricate and challenging areas that are often difficult to reach with other methods.

8. Enhanced Performance and Durability

In practical applications, stream finishing has demonstrated a considerable increase in performance, typically around 5%, offering benefits like quicker power delivery and cooler running. Importantly, this process enhances the lifespan of components, reducing wear and the need for costly maintenance and servicing.

Super Finishing vs. Stream Finishing: A Comparison

Superfinishing and stream finishing are two distinct surface enhancement techniques employed in manufacturing. While both aim to improve surface quality, they differ significantly in their methods and applications.

FeatureSuper FinishingStream Finishing
Remoção de materialMinimal material removal (1-2 microns)Minimal material removal
Heat GenerationCold process, minimal heatCold process, minimal heat
Surface SmoothnessAchieves very smooth surfacesAchieves smooth surfaces
Ideal ApplicationsHigh-precision parts, aerospace, bearingsHigh-value parts, precision-critical tasks
BenefitsExtends component life, reduces frictionExtends component life, reduces micro pitting

Both super finishing and stream finishing offer cold material processes, preserving the integrity of components and enhancing surface quality. However, the choice between them depends on the specific application, required surface smoothness, and the level of precision necessary for the components.

Conclusão

When considering super-finishing or other machining and finishing processes, it’s vital to evaluate the specific needs of your project. Think about the level of precision, the surface quality required, and the performance expectations of the components.

For those seeking professional services in Maquinação CNC e moldagem por injeção, look no further than Prototool. Prototool is known for its outstanding performance and dedication to accuracy, providing various manufacturing options. Whether you require super-finishing, micro-finishing, or any other high-finish machining service, Prototool is your trusted partner in unlocking the full potential of your manufacturing projects.

Choose precision, choose quality—choose Prototool for all your CNC machining and injection molding needs. Your path to manufacturing excellence begins here.

The post Unlocking Precision: The Art of Super-Finishing in Manufacturing appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/super-finishing/feed/ 0