Workflow | Prototool Prototool Offizielle Website Tue, 12 Dec 2023 01:10:13 +0000 de-DE stündlich 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Workflow | Prototool 32 32 Feinabstimmung Ihrer CNC-Projekte: Ein Leitfaden für die Fertigbearbeitung https://prototool.com/de/finish-machining/ https://prototool.com/de/finish-machining/#respond Mon, 06 Nov 2023 08:43:28 +0000 https://prototool.com/?p=14915 Fine-Tuning Your CNC Projects: A Guide to Finish Machining
Prototool

Surface finish or finish machining, a critical aspect of machining, delves into the fine details of perfecting a workpiece’s external quality and functionality. This precise process involves a meticulous surface adjustment, either by material removal or addition, to meet the highest standards of appearance and performance. If you’re already acquainted with the fundamentals of finishing […]

The post Fine-Tuning Your CNC Projects: A Guide to Finish Machining appeared first on Prototool written by Prototool.

]]>
Fine-Tuning Your CNC Projects: A Guide to Finish Machining
Prototool

Surface finish or Fertigbearbeitung, a critical aspect of machining, delves into the fine details of perfecting a workpiece’s external quality and functionality.

This precise process involves a meticulous surface adjustment, either by material removal or addition, to meet the highest standards of appearance and performance. If you’re already acquainted with the fundamentals of finishing machining, you’ll appreciate the importance of every detail.

In this article, we’ll delve deeper into precision finishing machining, unraveling the nuances of this high-precision endeavor. We’ll explore the key considerations, benefits, functions, and pitfalls to avoid when striving for that exact and refined outcome.

Whether you’re an industry professional or a budding enthusiast in precision finishing, our guide will equip you with valuable insights. Let’s explore, shall we?

What Does Finishing Involve?

In machining, achieving excellence often hinges on the meticulous details of precision finishing.

The fine finishing process, in its essence, comprises an array of techniques, including precision machining, grinding, electroplating, bead blasting, polishing, anodizing, powder coating, sandblasting, painting, and more. This vast toolbox of options allows manufacturers to fine-tune fabricated parts, enhancing their properties in several ways.

Consider a finished part as a canvas awaiting the final brushstrokes. Manufacturers employ specific finishing operations to imbue fabricated components with hardness, adhesion, solderability, electrical conductivity, smoothness, corrosion resistance, wear resistance, and more. These operations are tailored to the specific features required for the part.

The journey of finishing usually follows Schruppbearbeitung, which clears the initial excess material. The primary objective of finishing is to painstakingly refine the manufactured component, bringing it to precise final dimensions in terms of flatness, roughness, thickness, Toleranzen, and surface finish.

Whether striving for high-precision, exact dimensions, or a surface that exudes meticulous craftsmanship, surface finishing machining ensures your workpiece meets the highest standards.

Understanding the Key Considerations for Finishing Machining

When it comes to the realm of machining, finishing holds a position of paramount importance. Neglecting the fine finishing process can undermine the entire manufacturing endeavor. Let’s delve into some crucial considerations that should be at the forefront before embarking on the finishing process:

Objective of Finish Machining

Finish machining is the stage where precision and surface quality take the spotlight. Precision finishing passes prioritize the refinement of the workpiece. The primary objectives include:

  • Surface Finish: Achieving a smooth, polished surface free from the rough marks and scallops often found in rough machining.
  • Dimensional Accuracy: Fine-tuning the part’s dimensions to meet exact specifications and tolerances.
  • Tight Tolerances: Ensuring the component conforms to the precise measurements required for a specific application.

Process Parameters and Material Removal Rate (MRR)

Key parameters include of finishing machining include:

  • Cutting Velocity (Vc): This remains relatively constant and is selected based on material properties and machine tool capabilities.
  • Feed Rate (s or f): Lower feed rates enhance surface quality and dimensional accuracy.
  • Depth of Cut (t or a): The depth of cut is minimized to reduce the risk of poor surface finish.

The interplay of these parameters and their adjustment aims to control the Material Removal Rate (MRR). MRR isn’t vital for precision and surface finish.

Surface Finish and Dimensional Accuracy

One of the most critical aspects of finish machining is achieving impeccable surface finish and dimensional accuracy. In rough cuts, high feed rates and depths of cut tend to create saw-tooth-like scallop marks, resulting in primary surface roughness. However, as finish passes, these issues are addressed:

  • Feed Rate: Employing lower feed rates allows for meticulous control over the tool’s contact with the workpiece, resulting in a superior surface finish.
  • Depth of Cut: Reduced depths of cut further contribute to a smoother surface finish and heightened dimensional accuracy.

Selecting the Right Tool

Tool selection plays a pivotal role in finish machining. Why is that? Because finish machining demands sharp tools. A sharper tool edge and nose are prerequisites for better surface finish, accuracy, and tolerance. This requirement ensures that chip load, a common concern in rough cuts, doesn’t impede the tool’s performance.

  • The Part’s Application: The ultimate purpose of the part and the conditions it will encounter in its application are pivotal in choosing the appropriate finishing operation. For instance, components hidden within an automobile may prioritize durability over aesthetics. Understanding the part’s role and environmental factors is crucial in making the right surface finishing choice.
  • Kosten: Last but not least, the cost factor plays a pivotal role. Opting for the best finishes often involves high-quality materials, specialized tools, and intricate processes, impacting the overall project cost. Careful consideration and cost analysis are essential to align your fine finishing procedure with the budget constraints of your manufacturing project.

By keeping these considerations in mind, you can ensure that your finishing process enhances the quality, functionality, and longevity of the components you manufacture, ultimately contributing to the success of your machining endeavors.

Additional Tips for Mastering Finish Machining

Manual Craftsmanship

Skilled artisans employ tools like files, stones, knives, abrasive sheets, and specialized finishing tools to add precision to complex parts. This hands-on process is labor-intensive but adds significant value to each component.

Streamlined Efficiency with Mass Finishing

Mass finishing optimizes efficiency, employing abrasive media in a timed batch process. It’s a smart choice for simultaneous finishing, with media selection tailored to component characteristics.

The Art of Burnishing

Burnishing techniques like roller and ball methods work to improve surface quality without removing material, adding finesse and hardness to the part.

Automated Precision

Automated systems with rotating abrasive discs, brushes, and drums excel in handling various materials and employ meticulous programming for consistent finishing.

Precision Beyond Debris

Abrasive Blasting: This technique uses accelerated abrasive media to achieve remarkable surface perfection, ensuring surfaces are clean and ready for subsequent processes like painting.

Cutting-Edge Precision with Electrochemical Polishing

Electrochemical polishing take precision to a molecular level, using anodic metal dissolution to remove surface material.

Intricate Precision with Abrasive Flow Polishing

This process uses abrasive-laden slurry in vertical cylinders to polish surfaces and edges, ensuring intricate components meet the highest precision standards.

Enhancing Adhesion with Plasma Surface Treatment

Plasma surface treatment removes contaminants and activates materials at a molecular level, preparing them for subsequent coating, printing, or bonding operations.

What Is a Finishing End Mill?

A precision finishing end mill is characterized by its smooth tooth design. It doesn’t tear through material; instead, it glides over the surface with finesse. Its objective is to improve the surface, ensuring it meets the highest standards of smoothness and precision. While roughing and finishing are often separate endeavors, finishing end mills have the unique ability to blend these processes into one, streamlining efficiency without compromising on quality.

The Pros of Embracing Finish Machining with Finishing End Mills

  • Enhanced Surface Finish: The defining hallmark of finishing end mills is their capacity to yield a superior surface finish. They can transform even the most rugged workpiece into a smooth, polished masterpiece.
  • Beginner-Friendly: For those new to precision machining, finishing end mills offer an advantage. Their lower feed rates can be forgiving for beginners, allowing them to navigate the intricacies of finish machining with relative ease.
  • Unwavering Dimensional Accuracy: In the world of precision, accuracy is king. Finishing end mills are champions of maintaining dimensional precision, ensuring that each cut aligns perfectly with the intended specifications.
  • Close Tolerance Levels: The pursuit of perfection extends to achieving tight tolerances. Finish machining with finishing end mills guarantees that components conform to the most exacting measurements.
  • Minimized Material Removal: Finish machining is a process that values precision over aggression. It focuses on removing just the right amount of material, avoiding unnecessary excess.

The Fine Print: Considerations When Embracing Finish Machining with Finishing End Mills

  • Not a Universal Solution: While fine finishing end mills offer many benefits, it’s essential to recognize that they may not suit all applications. Lower feed rates and cutting depths may not align with every machining task.
  • The Quest for Sharpness: Achieving the best results with finishing end mills requires sharp cutters capable of managing a low chip load. The importance of sharpness cannot be overstated.
  • A Journey That Follows Roughing: Finish machining, represented by finishing end mills, is the concluding act in a two-step process. It comes into play after roughing has paved the way, ensuring the final component is a masterpiece of precision and smoothness.

Schlussfolgerung

Finish machining, the final step in precision component manufacturing, transforms raw materials into perfected works of art. From manual craftsmanship to automated precision, the world of finish machining offers diverse techniques for achieving unparalleled surface quality and precision.

When you need reliable and professional finishing machining services, trust Prototool.de. With expertise and advanced equipment, they deliver excellence in every detail. Your components deserve the best – experience precision with Prototool.com.

The post Fine-Tuning Your CNC Projects: A Guide to Finish Machining appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/finish-machining/feed/ 0
Optimierung der Produktion durch Halbfertigbearbeitung in der Zerspanung https://prototool.com/de/semi-finishing/ https://prototool.com/de/semi-finishing/#respond Mon, 06 Nov 2023 07:51:29 +0000 https://prototool.com/?p=14903 Optimizing Production with Semi-Finishing in Machining
Prototool

The manufacturing industry highly values the role of semi-finishing. This crucial process involves refining a product to a specific level of completion before reaching the final finishing stage. It is pivotal in ensuring the end product meets the required specifications and standards, enhancing quality and aesthetics. Various industries, from automotive parts to aerospace components and […]

The post Optimizing Production with Semi-Finishing in Machining appeared first on Prototool written by Prototool.

]]>
Optimizing Production with Semi-Finishing in Machining
Prototool

The manufacturing industry highly values the role of semi-finishing. This crucial process involves refining a product to a specific level of completion before reaching the final finishing stage.

It is pivotal in ensuring the end product meets the required specifications and standards, enhancing quality and aesthetics. Various industries, from Kfz-Teile zu Luft- und Raumfahrtkomponenten and medical devices, widely use semi-finishing.

In this article, we will take a look at the intricacies of semi-finishing, its methods, and its pivotal role in delivering top-notch manufacturing outcomes. Join us in uncovering the essential aspects of this intermediate machining stage and its importance in the production process.

Understanding the Mechanics of Semi-Finishing in Intermediate Machining

When exploring the intricacies of semi-finishing, a precise and controlled approach is essential. The following process provides a detailed insight into how semi-precision machining operates, ensuring that intermediate-level readers can comprehend its nuances.

Tool Selection and Parameters

In semi-finishing, a ¾-inch finishing ball end mill takes center stage. The operation follows a “Z” level semi-finish pass at 6,000 rpm with a feed rate of .024 inches per revolution (IPR), which equates to 144 inches per minute (ipm).

This is accomplished with a step-down of .03 inches. The result is a semi-finished cavity within .015 inches of the final dimensions. This approach removes residual material remnants from the prior high-feed roughing mill.

Comprehensive Coverage

The semi-finishing process encompasses the entire cavity, extending its influence to include corner radii within .015 inches of the target dimensions. This uniformity ensures that consistent stock material remains in place, setting the stage for the finishing phase.

It’s important to note that using a finishing tool smaller than the part’s final geometry corners is advisable. This prevents any potential dwell of the tool within these intricate areas.

Collaboration with Stakeholders

An additional facet of semi-finishing pertains to communication with customers and design engineers. This dialogue is pivotal in elucidating the significance of larger radii within the part’s design and machining process. In the presented scenario, the minimum corner radius is .5 inches, necessitating the utilization of a finishing tool featuring a 3/8-inch radius.

The Role of Semi-Finishing in Manufacturing

Semi-finishing, also known as intermediate or midway machining, plays a crucial role in the manufacturing process in factories. These semi-precision machining processes offer a range of benefits, making them indispensable in the journey from raw materials to finished products.

Let’s explore how semi-finishing and intermediate machining contribute to cost-effective and efficient manufacturing processes.

  • Cost Efficiency: Semi-finishing, or preliminary machining, significantly reduces manufacturing costs. By partially processing materials, manufacturers save time and resources, making the production process more budget-friendly. This not only improves the bottom line but also ensures cost-efficient progress machining.
  • Enhanced Efficiency: Integrating semi-finished goods enhances efficiency, especially in mid-stage machining. Manufacturers can focus on refining and completing products rather than starting from scratch, speeding up the production cycle.
  • Improved Quality: Craftsmen create semi-finished products under controlled conditions to ensure a high level of quality control during secondary machining or sub-finishing. This intermediate machining stage allows for faster progress and better quality assurance.
  • Reduced Inventory Costs: One of the significant advantages of in-between machining is the reduction in inventory costs. These materials are often produced in smaller batches, minimizing the need for extensive storage space. This approach aligns with just-in-time manufacturing, reducing associated expenses while accommodating changes in demand.
  • Greater Flexibility: Semi-finishing and mid-level machining introduce greater flexibility into the manufacturing process. Manufacturers can adapt these materials for various end products, allowing for a swift response to shifts in market dynamics and customer preferences. This capability to transition during machining is a valuable asset in today’s fast-paced business environment.

Ultimately, semi-finishing, intermediate machining, or halfway machining is an essential component of modern manufacturing. It enables companies to reduce costs, improve efficiency, enhance quality, and adapt to changing market conditions. Manufacturers embracing these processes gain a competitive edge and better meet the demands of the ever-evolving industry.

Finishing vs. Semi-Finishing in Machining: How Are They Different?

In manufacturing, achieving the desired precision, surface quality, and functional characteristics of a machined part is a critical aspect of the production process. Two key stages in this process are “semi-finishing” and “Veredelung.” Let’s delve into the details of these stages and understand the crucial differences between them.

1. Semi-Finishing

As mentioned earlier, semi-finishing is an intermediate stage in the machining process that occurs after roughing but before the final finishing phase. It aims to remove excess material from the roughing process and prepare the workpiece for final finishing.

Key Characteristics

  • Material Removal: During semi-finishing, the process still involves removing material from the workpiece, though at a slower rate compared to roughing. This stage helps in achieving the desired shape and dimensions.
  • Tooling: Semi-finishing typically involves cutting tools or abrasives with a medium level of precision. These tools are selected based on the desired surface quality and dimensional accuracy.
  • Oberfläche: The primary goal of semi-finishing is to improve the surface quality of the part. However, it does not achieve the final desired surface finish but leaves it at a pre-defined level.
  • Tolerances: During semi-finishing, the process brings Toleranzen closer to the final required values, yet it leaves some allowances for the final finishing process to achieve the exact specifications.
  • Cutting Parameters: Cutting speed, feed rate, and depth of cut are adjusted to semi-finish the workpiece effectively while avoiding excessive tool wear.
  • Removal Rate: The material removal rate is lower than roughing but higher than the finishing stage. It strikes a balance between speed and precision.

2. Finishing

Finishing is the final phase of machining and aims to achieve the ultimate precision, surface quality, and dimensional accuracy required for the part.

Key Characteristics

  • Material Removal: In the finishing phase, only a minimal amount of material is removed, typically in the form of a fine layer of the workpiece’s surface. The focus here is on refining the part rather than shaping it.
  • Tooling: Precision cutting tools or abrasives with the finest grit are used during finishing. These tools are designed to create the desired surface texture and meet strict dimensional tolerances.
  • Oberfläche: The primary objective of finishing is to attain the specified surface finish, often in micrometers or nanometers. It results in a highly polished or smooth surface.
  • Tolerances: Dimensional tolerances are brought to their final, exact values during the finishing stage. This is where the part meets its design specifications precisely.
  • Cutting Parameters: Cutting parameters are meticulously controlled to ensure that material removal is minimal and does not adversely affect the part’s precision.
  • Removal Rate: The material removal rate in the finishing phase is the lowest among all machining stages, as the emphasis is on precision and surface quality.

A Brief Comparison

AspectSemi-FinishingFertigstellung
PurposePrepare the workpiece for final finishing, achieve approximate dimensions, and shape the part.Achieve the highest precision, exact dimensions, and an exceptional surface finish.
Material RemovalSignificant material removal to attain desired dimensions.Minimal material removal to refine the surface.
ToolingTools with medium precision are used.Tools with the highest precision are employed.
OberflächeImproves surface quality but doesn’t achieve the final desired finish.Ensures the desired surface texture and gloss are attained.
TolerancesBrings tolerances closer to the final values.Achieves the exact specifications.
Cutting ParametersCutting parameters are adjusted for effective material removal.Cutting parameters are meticulously controlled to minimize material removal.
Material Removal RateMaterial removal rate is moderate.Material removal rate is minimal.

The Utilization of Semi-Finished Products in Manufacturing

Within intermediate machining, semi-finishing or using semi-finished goods forms a critical component. These semi-precision materials, often called midway machining products, are pivotal building blocks in the manufacturing process.

They are integral to accelerating production, thereby reducing time to market and finding applications across various industries.

Semi-finished goods encompass partially finished products integrated into the final goods, ultimately reaching consumers or businesses. Their importance in most manufacturing processes is undeniable, with many production cycles heavily reliant on assembling a collection of these semi-finished materials.

The usage of semi-finished products can manifest in several ways:

Procurement from Suppliers

Manufacturers often acquire semi-finished goods from specialized suppliers. These components, already in a production-ready state, enable companies to expedite their manufacturing processes and meet market demands more efficiently.

This approach aligns with the concept of in-between machining, where materials are progressively shaped into their final form.

Internal Production

In certain scenarios, manufacturers take a more integrated approach by producing semi-finished goods. An excellent example is a chocolate maker that owns the cocoa bean processing facility responsible for crafting the key ingredients for their chocolate bars.

In this instance, the manufacturer retains control over the quality and customization of the semi-finished components, a practice akin to transition machining.

Sale to Other Companies

Beyond internal usage, some manufacturers specialize in crafting semi-finished goods designed for sale to other businesses. These semi-precision materials are then incorporated into various final products by different companies, fostering collaborative industrial ecosystems.

It reflects the concept of mid-level machining, wherein specialized semi-finished goods become integral components in diverse manufacturing operations. These versatile applications of semi-finished goods are pivotal in expediting production, enhancing quality, and streamlining the manufacturing process.

Summing Up!

Semi-finishing is a pivotal process in machining and is essential for optimizing product quality. To make the most of it, consider tool selection, techniques, and product requirements. For expert CNC machining und Spritzgießdienstleistungen, Prototool is your trusted partner in the journey toward superior products.

The post Optimizing Production with Semi-Finishing in Machining appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/semi-finishing/feed/ 0
Vom Rohzustand zum Feinzustand: Erkundung von Rohbearbeitungsmethoden https://prototool.com/de/rough-machining/ https://prototool.com/de/rough-machining/#respond Mon, 06 Nov 2023 03:47:43 +0000 https://prototool.com/?p=14883 From Raw to Refined: Exploring Rough Machining Methods
Prototool

Rough machining is a process that involves swiftly and efficiently eliminating excess material to bring your workpiece one step closer to its final design. This CNC machining approach employs larger cutting tools, making broad and powerful cuts to eliminate any unwanted material from a workpiece quickly. The result may be a coarser surface finish, but […]

The post From Raw to Refined: Exploring Rough Machining Methods appeared first on Prototool written by Prototool.

]]>
From Raw to Refined: Exploring Rough Machining Methods
Prototool

Rough machining is a process that involves swiftly and efficiently eliminating excess material to bring your workpiece one step closer to its final design. This CNC-Bearbeitung approach employs larger cutting tools, making broad and powerful cuts to eliminate any unwanted material from a workpiece quickly.

The result may be a coarser Oberflächengüte, but the goal is efficiency and speed. However, it’s much more than its name suggests; it’s the robust bridge between the raw material and the meticulous precision required in subsequent machining phases.

In this article, we’ll talk about the important things to think about, the advantages, what rough machining does, and the usual errors people make when doing rough machining. We’re here to guide you through this vital phase, where material reduction und bulk machining lay the groundwork for a perfectly crafted end product.

So, without any delay, let’s uncover the intricacies of this initial machining process that ensures quality performance in this essential part of CNC machining.

Key Considerations for Rough Machining

Now, let’s delve into the essential considerations when planning for the roughing stage in machining. These points are crucial for making sure the first steps of the machining process work out well. Here’s a detailed guide to help you understand and optimize rough machining:

Picking a Material 

Understanding the material you’re working with is the first crucial step in rough machining. The type of material significantly impacts the entire process. Complex materials often require a more delicate approach, which means using slower feed rates and cutting speeds to prevent tool damage.

Moreover, softer materials can withstand more aggressive cuts. The key is to choose the right speed and feed rate, considering the material properties.

Selecting the Tools

Selecting the appropriate cutting tool is paramount in the roughing process. Opt for larger, robust tools with sturdy cutting edges. These tools can endure the aggressive cutting conditions and heavy chip loads commonly associated with rough machining. A well-chosen tool ensures both longevity and efficiency.

Setting Process Parameters

Optimizing process parameters is essential for successful rough machining. Focus on determining the right cutting speed, feed rate, and depth of cut. These parameters should be set to bulk material removal rates while preserving tool life and protecting the workpiece from damage. Finding the right balance is crucial for efficient roughing.

Coolant Usage

Proper coolant use is crucial during roughing. The correct amount and type of coolant help dissipate heat and prevent tool wear, which is essential for maintaining tool integrity and workpiece quality. The choice of coolant should align with the material you’re machining, ensuring the best results.

Work Holding Precision

To guarantee a successful roughing process, secure work holding is essential. The aggressive cutting forces in rough machining require the workpiece to remain immovable. Any unintended movement can result in machining errors or damage. Prioritize secure work holding to ensure precision throughout the roughing process.

Functions of Rough Machining

Now, let’s explore the critical functions of rough machining. This initial step of shaping the workpiece is very important to make sure the final product turns out to be of good quality. Here’s a breakdown of its key functions:

  • Error Correction: Rough Machining is the initial machining stage in a series of workpiece processing stages. When dealing with substantial machining allowances and high cutting forces, errors can occur. These errors are gradually corrected during semi-finishing und mechanical finishing, ensuring the desired processing quality.
  • Equipment Utilization: Different processing stages have varying requirements for equipment. Rough machining equipment is characterized by its high power, efficiency, and rigidity, making it well-suited for its role. This phase harnesses the features of roughing equipment to enhance production efficiency, ensuring that the project’s demands are met.
  • Defect Identification: Rough Machining leads the processing sequence. It allows for the timely detection of defects in the workpiece blank. This includes sand holes, pores, or insufficient processing allowances. Identifying these defects at this stage is invaluable, as it enables prompt repairs or the decision to scrap the workpiece, preventing wasted time and resources in subsequent processing.
  • Stress Management: This phase also provides an opportunity to arrange the cold and heat-treatment processes effectively. After hot working, workpieces may carry significant residual stress. Separating rough and finish machining and incorporating aging processes to eliminate this stress ensures the final product’s dimensional stability and quality.
  • Surface Protection: Finally, the strategic placement of rough machining at the beginning of the processing sequence offers protection to the surfaces undergoing mechanical finishing and pre-finishing machining. This reduces wear and abrasion, preserving the quality of the final product.

Benefits of Rough Machining

Delving into the world of rough machining offers a host of distinct advantages:

  • Bulk Material Removal: The most prominent benefit of rough machining is its remarkable bulk material removal rate. This process excels at swiftly eliminating surplus material, streamlining the machining procedure, and optimizing time efficiency.
  • Enhanced Tool Life: Rough machining is critical in safeguarding the longevity of more delicate finishing tools. By efficiently removing the bulk of the material, finishing tools endure less stress and wear, ultimately extending their operational lifespan.
  • Foundation for Finishing: In the grand scheme of machining, roughing lays the groundwork for the finishing phase. By shaping the workpiece into an approximation of the final product, it simplifies the task of finishing, rendering it both more accessible and more precise.
  • Improved Efficiency: Roughing significantly diminishes the time spent in subsequent machining phases by bringing the workpiece closer to its final form. This efficiency translates into reduced manufacturing times and, potentially, lower costs.
  • Enabling Difficult Cuts: Rough machining empowers machinists to execute deeper and wider cuts that would be too aggressive or risky during the finishing stage. This capability proves particularly advantageous when working with challenging materials or intricate designs.

8 Ways to Minimize Rough Machining Errors

Maximizing the efficiency and quality of Schruppbearbeitung involves meticulous attention to several critical factors. Let’s delve into six standard methods to optimize roughing errors:

1. Suitable Design

For parts with straight prismatic walls and extended axial cutting depths, optimizing roughing is ideal. This approach enhances the machining of challenging corner features and yields high metal removal rates, particularly in superalloys and stainless steels.

2. High-Feed Roughing

In intricate three-dimensional mold cavities, high-feed roughing often outperforms optimized roughing. This method is especially valuable when a stepped surface results from optimized roughing, necessitating extensive semi-finishing.

3. Span Size

Reducing the span size as the number of grooves increases maintains proper chip formation and surface finish at higher feed speeds. Smaller spans boost cutting speed and overall metal removal rates.

4. Precision Tool Holders

High-precision tool holders are vital for optimized roughing. These holders, such as shrink and high-precision chucks, minimize vibration and enable optimal performance.

5. Machine Tool Rigidity

A robust milling machine with a fast spindle and high rigidity ensures smooth roughing. Machine tool rigidity, from spindle bearing to ball screw, minimizes vibration, extending tool life and enhancing part quality.

6. Proper Programming

Employing software tailored for the roughing process is essential. Generic high-speed side milling oder complex 3D milling software may not effectively handle optimized roughing demands. Use software that truly adapts to the process’s unique requirements.

7. Depth of Cut

Selecting the appropriate depth of cut is crucial. Generally, one pass with a depth of cut of 2xD is optimal. Shallow radial spans necessitate deeper cutting depths, while wider spans generate more heat, requiring shallower cuts to maintain consistent metal removal rates.

8. Customized Parameters

Generic machine tool software defaults may not be suitable for specific cutting mills. Consult your milling cutter professional for recommended parameters based on their expertise and research, tailoring cutting data for different milling cutter designs and material groups.

This will help you adjust processing parameters based on your specific rough milling cutter and processing requirements for improved efficiency.

Rough Machining vs. Finishing: How Are They Different?

Are you confusing roughing with finishing in machining? Well, in CNC machining, the processes of rough and finish machining are distinctly different in their purposes and methodologies. To better understand these key differences, you can refer to the table below:

AspectGrobzerspanungFinish Machining
PurposeRough machining aims to quickly shape the workpiece by removing excess material. Surface finish is not a primary concern; the goal is efficient material removal.Finish machining is performed to enhance surface quality, dimensional precision, and feature tolerances. Speed is not the primary focus.
Process Parameters and MRRRough machining employs higher feed rates and cutting depths, increasing material removal rates (MRR).Finish machining uses lower feed rates and cutting depths, which reduce MRR but improve surface finish.
Surface Finish and Dimensional AccuracyRough machining, with its higher feed rates and cutting depths, leaves serrated scallop marks on the surface, leading to a rough finish and lower dimensional accuracy.Finish machining, with lower feed rates and cutting depths, ensures improved surface finish, higher accuracy, and tighter tolerances.
ToolsRough machining benefits from negative rake inserts that can withstand high cutting forces and attain faster speeds.Finish machining typically employs front-angle blades to achieve superior surface finish.

To ensure that you get the exact outcome you’re aiming for in CNC (Computer Numerical Control) machining, it’s vital to have a clear understanding of the distinct stages involved in the machining process. Each stage has its own purpose and requirements, and knowing these differences in detail helps in planning and executing the operations effectively, leading to precision-made parts and efficient production.

Precisely, rough machining is geared toward rapid material removal, while finish machining prioritizes precision and surface quality. By selecting the appropriate approach for each task, machinists can efficiently transform raw materials into precise, high-quality products.

Schlussfolgerung

Optimized roughing is a pivotal strategy that holds the potential to streamline part cycle time, enhance surface finish, extend rough milling cutter life, and maximize machine tool efficiency. By targeting specific parts and features like deep grooves, challenging corners, and straight walls, this method proves its worth in machining.

To harness its full benefits, collaboration with milling cutter suppliers and embracing best practices are essential. When looking for a reliable and professional rough machining service provider, consider Prototool.de, your trusted partner in achieving efficiency and excellence in the machining process.

The post From Raw to Refined: Exploring Rough Machining Methods appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/rough-machining/feed/ 0
Keramik-Herstellung: Was es ist, der Prozess und die wichtigsten Überlegungen https://prototool.com/de/ceramic-manufacturing/ https://prototool.com/de/ceramic-manufacturing/#respond Wed, 05 Apr 2023 12:44:45 +0000 https://prototool.com/?p=10483 Ceramic Manufacturing: What It Is, The Process, and Key Considerations
Prototool

Ceramic manufacturing is a complex and fascinating process that involves using advanced materials and techniques to create a wide range of products, from household items to high-tech components for aerospace and defense applications. One of the most popular methods for ceramic manufacturing is injection molding, which allows for creating of complex shapes and designs with […]

The post Ceramic Manufacturing: What It Is, The Process, and Key Considerations appeared first on Prototool written by Prototool.

]]>
Ceramic Manufacturing: What It Is, The Process, and Key Considerations
Prototool

Keramische Herstellung ist ein komplexer und faszinierender Prozess, bei dem fortschrittliche Materialien und Techniken eingesetzt werden, um eine breite Palette von Produkten herzustellen, von Haushaltsgegenständen bis hin zu Hightech-Komponenten für die Luft- und Raumfahrt und für Verteidigungsanwendungen. Eine der beliebtesten Methoden zur Herstellung von Keramik ist Spritzgießendie die Herstellung komplexer Formen und Designs mit hoher Präzision und Wiederholbarkeit ermöglicht. In diesem Artikel wird Schritt für Schritt erläutert, wie Keramik für die Herstellung verschiedener Produkte im Spritzgussverfahren verwendet wird.

Finished products made by ceramic manufacturing process

Eigenschaften von keramischen Werkstoffen:

Nachfolgend sind die Eigenschaften aufgeführt, die die keramische Fertigung zu einer Standardlösung machen, die sich in hohem Maße bewährt hat:

Härte:

Keramiken sind zäh und äußerst verschleißfest. Sie können hohem Druck, Belastungen und Temperaturschwankungen standhalten, ohne sich zu verformen oder zu brechen. Das macht sie ideal für Schneidwerkzeuge, Lager und andere industrielle Anwendungen.

Widerstandsfähigkeit bei hohen Temperaturen:

Keramik kann extrem hohen Temperaturen standhalten, ohne zu schmelzen oder sich zu zersetzen, und ist daher ideal für Hochtemperaturanwendungen wie Öfen, Brennöfen und Gasturbinen.

Chemische Beständigkeit:

Keramik ist äußerst chemikalienbeständig und kann Säuren, Laugen und anderen korrosiven Substanzen standhalten. Dies macht sie ideal für die chemische Verarbeitung, Wasseraufbereitung und raue Umgebungen.

Elektrische Eigenschaften:

Keramiken haben hervorragende elektrische Eigenschaften, darunter einen hohen Isolationswiderstand und einen geringen dielektrischen Verlust. Dies macht sie ideal für elektronische Anwendungen wie Kondensatoren, Widerstände und Isolatoren.

Biokompatibilität:

Keramik kann in medizinischen und zahnmedizinischen Anwendungen wie Zahnimplantaten, Gelenkersatz und Knochentransplantaten eingesetzt werden.

Main characteristics of ceramic materials

Gemeinsame Anwendungen von keramischen Werkstoffen in der Fertigung:

Obwohl Keramik ein häufig verwendetes Produkt ist, das bei der Herstellung von Produkten des täglichen Lebens zum Einsatz kommt, gibt es bestimmte Branchen, die sich für die Keramikherstellung für ihre Produkte. Zu diesen Branchen und ihren Produkten gehören:

  • Luft- und Raumfahrt und Verteidigung: Keramik wird in der Luft- und Raumfahrt- sowie in der Verteidigungsindustrie aufgrund seiner hohen Festigkeit, Haltbarkeit und Hitzebeständigkeit in großem Umfang eingesetzt. Sie hilft bei der Herstellung von Komponenten wie Raketenspitzen, Turbinenschaufeln und Triebwerkskomponenten.
  • Elektronik: Keramik wird in der Elektronikindustrie aufgrund seiner hervorragenden elektrischen Eigenschaften zur Herstellung von Kondensatoren, Widerständen und anderen elektronischen Bauteilen verwendet.
  • Medizinische: Aufgrund ihrer Biokompatibilität werden Keramiken in der Medizin und in der Zahnmedizin eingesetzt, z. B. für Zahnimplantate, Knochentransplantate und Gelenkersatz.
  • Automobilindustrie: Keramik wird in der Automobilindustrie zur Herstellung von Katalysatoren, Motorkomponenten und Bremsen verwendet, da sie sehr temperaturbeständig und robust ist.
  • Energie: Keramik wird in der Energiewirtschaft aufgrund ihrer Hochtemperaturbeständigkeit und ihrer elektrischen Eigenschaften zur Herstellung von Brennstoffzellen, Solarzellen und anderen Komponenten verwendet.
Some applications of ceramic materials in industry

 10 Erstaunliche Vorteile der Entscheidung für die keramische Fertigung:

Bei der Keramikherstellung werden Produkte aus Ton, Kieselerde, Feldspat und anderen Rohstoffen hergestellt. Dieses Verfahren wird seit Tausenden von Jahren angewandt, und die moderne Technologie hat die Entwicklung von noch fortschrittlicheren Keramikprodukten ermöglicht. Die Keramikherstellung bietet zahlreiche Vorteile, die sie zu einer beliebten Wahl für verschiedene Anwendungen machen.

Langlebigkeit:

 Einer der größten Vorteile von Keramikprodukten ist ihre Langlebigkeit. Keramische Materialien sind äußerst verschleißfest und eignen sich daher ideal für raue Umgebungen. Sie sind außerdem korrosionsbeständig und können hohen Temperaturen standhalten, was sie für den Einsatz in industriellen Umgebungen geeignet macht.

Vielseitigkeit:

Ein weiterer Vorteil der Keramikherstellung ist ihre Vielseitigkeit. Aus Keramik kann eine breite Palette von Produkten hergestellt werden, von Alltagsgegenständen wie Tassen und Tellern bis hin zu speziellen Bauteilen, die in der Luft- und Raumfahrt und in der Medizintechnik eingesetzt werden.

Ökologische Nachhaltigkeit:

Keramische Produkte sind oft umweltfreundlicher als Kunststoff oder Metall. Sie werden aus natürlichen Materialien hergestellt und können am Ende ihrer Nutzungsdauer recycelt und zusammengesetzt werden.

Ästhetische Anziehungskraft:

Keramische Produkte sind für ihre Ästhetik bekannt. Sie können auf verschiedene Weise geformt und glasiert werden, was einzigartige und visuell ansprechende Designs ermöglicht.

Wärmedämmung:

Keramische Werkstoffe sind hervorragende Isolatoren, die sich ideal für hitzebeständige Anwendungen eignen. Man findet sie in Ofenauskleidungen, Ofenkomponenten und Hochtemperaturfiltern.

Chemische Beständigkeit:

Keramik ist auch sehr widerstandsfähig gegen viele Chemikalien, was sie für Anwendungen nützlich macht, bei denen andere Materialien schnell erodieren oder abgebaut werden.

Biokompatibilität:

Viele keramische Werkstoffe sind biokompatibel, d. h. sie können gefahrlos für medizinische Implantate und andere biologische Anwendungen verwendet werden.

Geringer Wartungsaufwand:

Keramische Produkte sind oft wartungsarm und erfordern während ihrer Lebensdauer nur wenig oder gar keine Instandhaltung. Das macht sie zu einer attraktiven Option für Anwendungen, bei denen eine regelmäßige Wartung praktischer wäre.

Kosten-Nutzen-Verhältnis:

Auch wenn die Anschaffungskosten für keramische Produkte höher sind als die einiger anderer Materialien, können sie aufgrund ihrer langen Lebensdauer und Beständigkeit auf lange Sicht kosteneffektiver sein.

Elektrische Eigenschaften:

Keramische Werkstoffe haben eine Reihe von elektrischen Eigenschaften, die sie für Anwendungen von Isolatoren bis hin zu Leitern nützlich machen. Sie kommen in elektronischen Bauteilen wie Kondensatoren und Widerständen zum Einsatz.

Alles in allem bietet die Keramikherstellung zahlreiche Vorteile, die sie zu einer attraktiven Option für verschiedene Anwendungen machen. Keramik wird wegen ihrer Langlebigkeit, Vielseitigkeit, Ästhetik, Umweltverträglichkeit, Wärmedämmung, chemischen Beständigkeit, Biokompatibilität, geringen Wartung, Kosteneffizienz und elektrischen Eigenschaften weithin verwendet und geschätzt.

The benefits of ceramics visible

Anforderungen und Überlegungen zum keramischen Herstellungsprozess:

Zu den wesentlichen technischen Anforderungen und Verfahren, die bei der Herstellung von Keramik zu beachten sind, gehören die folgenden:

Auswahl der Materialien:

Die Auswahl des geeigneten keramischen Materials ist entscheidend für den Erfolg des Herstellungsprozesses. Die wichtigsten Faktoren, die dabei zu berücksichtigen sind, sind die Eigenschaften des Materials, die Kosten, die Verfügbarkeit und die Kompatibilität mit anderen Komponenten.

Powder Preparation:

Careful preparation of ceramic powders is crucial to ensure consistent particle size distribution, purity, and flow properties. Professionals use milling, spray drying, and calcination techniques to prepare ceramic powders.

Binder System:

The binder system used in ceramic manufacturing plays a crucial role in shaping and forming the product. The binder system should have the necessary rheological properties to allow for uniform flow during molding and should be compatible with the ceramic material you use.

Molding:

Molding is a critical step in ceramic manufacturing, and several factors must be considered, including Formgestaltung, temperature, pressure, and time. Optimizing the molding process is crucial to ensure the product has the desired shape, dimensions, and surface finish.

Production of ceramic products by injection molding machine

Debinding:

After molding, the product must be debonded to remove any organic materials, such as binders or lubricants, that professionals add during the manufacturing process. It’s vital to conduct debonding carefully to prevent cracking, warping, or other Mängel in the product.

Sintering:

Sintering is a critical step in ceramic manufacturing that involves heating the product at a high temperature to achieve the desired mechanical and thermal properties. Optimize the sintering process so that the development and its consistent microstructure densify correctly throughout.

Quality Control:

Quality control procedures should be in place to ensure that the product meets the desired specifications and standards. This may involve testing the product for mechanical, thermal, or chemical properties or conducting visual inspections to detect defects.

Environmental Considerations:

Ceramic manufacturing can generate significant amounts of waste and pollution. Therefore, ecological considerations, such as waste management, energy efficiency, and emissions reduction, should be considered throughout manufacturing.

Tips to Ensure Quality Ceramic Product Manufacturing:

The following are some crucial tips to consider to ensure quality ceramic manufacturing:

Proper Material Selection:

The suitable ceramic material is vital for manufacturing quality. The material should have the appropriate mechanical, thermal, and chemical properties for the intended application. Manufacturers should thoroughly analyze the material’s properties and characteristics to meet the required specifications.

Proper Preparation of Ceramic Powder:

Preparing the ceramic powder is a critical step that requires attention to detail. Prepare the powder with a consistent particle size distribution and free from contaminants. It’s also important to carefully monitor the milling or spray-drying process to ensure the powder is of the desired quality.

Proper Binder System:

The binder system used in ceramic manufacturing should be compatible with the ceramic material used. It’s essential to carefully monitor the viscosity and flow properties to ensure the mixture flows evenly during molding. The binder should also be easily removable during the debonding process to avoid defects in the final product.

Molding Process Optimization:

The molding process should be carefully optimized to ensure the product has the desired shape, dimensions, and surface finish. Carefully consider the mold design and closely monitor the molding process to ensure product formation without defects or voids.

Controlled Debinding Process:

The debonding process is a critical step that requires careful control to avoid defects in the final product. Ensure to fully monitor the temperature, time, and atmosphere conditions to properly remove the binder without damaging the ceramic material.

Controlled Sintering Process:

Sintering is critical in achieving the final product’s desired mechanical and thermal properties. It’s essential to carefully control the sintering temperature, time, and atmosphere conditions to ensure the complete densification of ceramic particles without causing defects in the final product.

Quality Control Procedures:

Quality control procedures should be in place throughout manufacturing to ensure the product meets the desired specifications and standards. This may involve testing the product for mechanical, thermal, or chemical properties or conducting visual inspections to detect defects.

Continuous Improvement:

Continuous improvement is a critical component of quality ceramic manufacturing. Manufacturers should continually evaluate and optimize their manufacturing processes to produce high-quality products efficiently and effectively.

Schlussfolgerung:

In the end, once you understand the complexities of ceramic product production, with careful optimization of each step, ceramic injection molding can produce high-quality and complex ceramic products with excellent mechanical, thermal, and chemical properties.

The post Ceramic Manufacturing: What It Is, The Process, and Key Considerations appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/ceramic-manufacturing/feed/ 0
In-Depth Guide On The Injection Molding Gate https://prototool.com/de/injection-molding-gate/ https://prototool.com/de/injection-molding-gate/#respond Mon, 30 Jan 2023 00:38:56 +0000 https://prototool.com/?p=8780 In-Depth Guide On The Injection Molding Gate
Prototool

While injection mold tools are difficult to design and manufacture, their essential concepts are simple to grasp. The mold comprises two faces, one of which has a cavity and core set into which the plastic is injected. The plastic – which, as the name suggests, is injected into the mold via a sprue that feeds […]

The post In-Depth Guide On The Injection Molding Gate appeared first on Prototool written by Prototool.

]]>
In-Depth Guide On The Injection Molding Gate
Prototool

Während injection mold tools are difficult to design and manufacture, their essential concepts are simple to grasp. The mold comprises two faces, one of which has a cavity and core set into which the plastic is injected. The plastic – which, as the name suggests, is injected into the mold via a sprue that feeds the runner plastic – enters the mold’s cavity via the gate. The injection molding gate is the literal entrance point for plastic into a cavity/core and, as such, can make or break a mold. If the mold is too tiny, it will not fill; if it is too huge, the plastic will be too difficult to shear.

injection molding gate

In this guide, we will talk about everything related to an injection molding gate. Keep reading to learn more!

What is Injection Molding Gate?

In injection molding, a gate is a small, strategically placed opening used to regulate the flow of plastic melt into the mold chamber. Using the proper injection molding gate can guarantee the quality of your molded components.

The amount, pressure, and temperature of the molten plastic in the injection molding process are affected by parameters such as gate type, position, dimensions, material, and mold type. Injection mold gate design is used in several sectors to create intricate plastic components.

The Fundamentals of Injection Molding Gates

Gates can be placed along mold separation lines or strategically throughout the cavity. These holes can be broad or narrow, with tapered or constant diameters to aid flow control. Gates have depth because they protrude from the mold. Mold costs are affected by the number of gates in a cavity and their complexity. Cycle times and the visual appearance of parts are also affected by gates.

Most molten plastic material cools and solidifies inside the mold cavity during injection molding to form the completed component. Some plastic hardens at the gate and protrudes from the part’s surface. De-gating, the act of removing excess material, is critical for part quality and can be done manually or automatically.

Gate Trimming: Manual vs. Automatic

With the advanced technology used by manufacturing service providers like Prototool, human interaction is unnecessary when gates are automatically trimmed. Instead, as the part is removed, extra gate material is sheared from the runner.

Different types of gates are built for manual or automatic trimming, and while automatically trimmed gates may appear to be the best option, they aren’t necessarily. Let’s talk about the further types/designs involved in both these gates:

Manually Trimmed Gate Types:

Edge Gate

For flat components, edge or conventional gates are preferred. Why is that? Because the most common and straightforward injection mold gate design is the edge gate. It is often positioned at the edge of the workpiece, forming a visible mark at the demarcating line, as the name implies. It has bigger cross-sectional areas, allowing molten plastic to flow into the cavity.

Direct or Sprue Gates:

Large, cylindrical pieces are fitted with direct or sprue gates. One of the most typical gate designs in injection molding is the direct/sprue type. Large quantities of plastic may be injected quickly into the Anguss, which moves and melts directly into the mold chamber. In most cases, lower injection pressure and shorter feeding times are needed. High tensile stress in the vicinity of a direct gate is available with minimal design effort.

Disc or Diaphragm Gates:

These gates are utilized with round or cylindrical elements that require concentricity. Moreover, an injection molding gate is often difficult to remove and expensive to cut. Because they both taper out from underneath the gate, the diaphragm gate and the sprue gate appear identical. These gates are typically utilized with angular-shaped molded parts. Even though the injection molding process’s temperature, speed, and pressure might affect the quality of the ejected component, the diaphragm gate effectively reduces the production of weld lines and wrapped shapes on the molded parts.

Fan Gates:

They have a large aperture with different thicknesses. They enable the rapid filling of large components and fragile mold sections. Fan gates, as the name suggests, are shaped like fans. Mold can enter the cavity through a wide opening created by these gates. The gate gradually widens to form a fan shape from the runner to the direction of the mold cavity while remaining consistent in thickness. They are frequently utilized to create a consistent flow into huge portions.

Cashew Gates:

The cashew gate is shaped like a tree nut. Manufacturers use this gate type for products that can be disfigured during gate removal. The curved nature of the cashew gate makes it difficult to withdraw molded parts without harming or deforming them.

gate case

Additional Gate Types/Properties:

  • The gate has a rectangular cross-section that can be tapered between the component and the runner.
  • A sprue directs and swiftly feeds material into the cavity.
  • Tab gates are utilized for thin, flat parts with minimal shear stresses. These strains are limited to the gate region by a tab-like structure.
  • Ring gates let the material flow freely before it enters a homogeneous, tube-like extension to fill the mold.
  • Spoke gates are spherical gates with a cross in the center. They’re utilized to make tube-shaped pieces, but achieving exact concentricity is difficult.

Automatically Trimmed Gate Types:

Hot Tip Gates: These gates can accommodate conical or spherical shapes with a homogeneous flow into the mold cavity. They are employed in hot runner systems, which maintain the plastic molten until it enters the cavity.

Pin Gates: These gates are used with fast-flowing resins and where the visual appearance of a part is important. They are frequently used on goods that cannot remain on both sides of the separating line. Pin gates are often located on the mold’s B-side, near the Auswerferstifte. A pin gate is appropriate for three plate molds with the runner channel positioned on a different runner plate; the mold flow is split in numerous ways, with varied gate locations going to the cavity. Because the gate point is so small, the injection mold opening can trim it off. Because of the huge runner, it has a high scrap rate, which is a drawback.

Submarine or Sub Gates: These gates have a tapering channel, which may help conceal gate defects. These apertures are also known as tunnel gates. The submarine or tunnel injection molding gate is typically located beneath the mold parting line, allowing for automatic trimming during component ejection. It entails filling the hollow from below the dividing line using a thin tube that joins the cavity near the parting line. Similarly, the draft angle makes it easier to discharge finished plastic pieces without breaking.

Injection Molding Gate Design Considerations:

Gate Placement

Due to the tricky location of some of the gates, it is more challenging to segregate certain areas than others. Similarly, the order in which particular gates are closed might result in malformations and lines in the molded pieces. As a result, you need to pay close attention to the location of the gates in your injection molding design.

Gate Size

When doing injection molding, the gate size must be large enough to allow correct shearing whenever the mold goes through the machine. The gate dimensions have to be such that they permit the mold to be correctly filled. Shear heating rates are higher in gates with a smaller cross-section. However, if they are either too little or too large, they have the potential to raise the flow pressure inadvertently. Therefore, if you want the greatest outcomes, you should utilize gates of an appropriate size.

Form and Surface of the Component

Choosing a certain gate design when molding components with various shapes and working toward a specific finish is recommended. For example, the cashew gate design is perfect for working on smaller parts because it provides a surface finish that is smooth and homogeneous over the whole part.

As a result, you need to establish the optimal gate for your components and the surface finish you want to achieve. When working with complex designs, you might also want to consider characteristics such as undercuts, which can obstruct the unobstructed expulsion of completed plastic components.

plastic injection molding gate

Additional Factors to Consider: Injection Rates and Times

When plastic is injected at high speeds via a gate, friction can cause temperatures to rise, and if there is sufficient additional heat, the plastic’s molecular structure could be compromised. However, if the injection speed is slowed to prevent degradation, this may result in weld lines and a reduction in the mechanical strength of the item. In addition, slower cycle times result in fewer parts produced each hour, leading to higher processing costs.

Injection molders utilize a relative viscosity vs. shear rate curve to identify the optimal level of injection speed and gate size. This is because gate size is not the only factor determining whether injection speed should be increased or decreased.

Schlussfolgerung:

Injection mold gate design is critical in assuring plastic mold quality and productivity. The appropriate gate design can mean the difference between great molds and flawed ones. The proper injection molding gate design aids in lowering production costs and optimizing cycle times.

Für weitere Details und Fragen können Sie sich gerne an uns bei Prototool wenden.

The post In-Depth Guide On The Injection Molding Gate appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/injection-molding-gate/feed/ 0
EDM-Bearbeitung: Betrieb, Merkmale und Komponenten verstehen https://prototool.com/de/edm-machining/ https://prototool.com/de/edm-machining/#respond Tue, 17 Jan 2023 07:54:04 +0000 https://prototool.com/?p=8634 EDM Machining: Understanding the Operation, Characteristics, and Components
Prototool

The costs of using standard production methods can skyrocket if you need unusual dimensions, materials, or other specifications for your manufactured product. Machining a block with bearing or component-holding openings and chamfers requires intricate milling, turning, and drilling. What if you create one or two parts for your prototype while still in the planning and […]

The post EDM Machining: Understanding the Operation, Characteristics, and Components appeared first on Prototool written by Prototool.

]]>
EDM Machining: Understanding the Operation, Characteristics, and Components
Prototool

The costs of using standard production methods can skyrocket if you need unusual dimensions, materials, or other specifications for your manufactured product. Machining a block with bearing or component-holding openings and chamfers requires intricate fräsen, Drehen, and drilling. What if you create one or two parts for your prototype while still in the planning and design stages? Services like electrical discharge machining, i.e., EDM machining, might be a more time and resource-efficient alternative to traditional machining techniques like milling and turning. A succession of current discharges between two electrodes separated by a dielectric bath liquid removes excess material from a workpiece in this manufacturing process.

https://youtube.com/shorts/NUdO3kL01EM?feature=share

In this comprehensive guide, we will discuss everything you need to know about operating an EDM machine and the functions of its different components.

Basic Operation:

EDM stands for Electrical Discharge. EDM Machining is a metal-cutting procedure that uses electricity, similar to a plasma cutter but done underwater. The method is widely used in the production of Spritzgießformen. The method can range from using a tiny diameter metal tube to create a precise hole in a metal block to machining a toy shape in a metal block for injection molding. I’ll teach you how to build your EDM machine using simple hand tools and components from your local hardware shop.

Electrical discharge machining removes metal comparable to plasma cutting but on a much smaller scale and underwater. As seen in the preceding stages, the tool is generally above the workpiece and wired to the positive voltage. In contrast, the workpiece is immersed in distilled water (a dielectric fluid that does not conduct electricity) and wired to the negative voltage.

Before they touch, the tool will emit a spark as it approaches the workpiece. The spark now warms the tool and the workpiece, melting a small portion of both. The molten metal quickly cools in the water, and the water flow drives the metal particles out of the space between the two pieces. This operation is done several times until the workpiece is etched away as the negative of the tool shape.

The tool is often placed on a vertical linear slide, allowing precise positioning. If the tool is too far from the workpiece, no spark will appear; if the tool is too close to the workpiece, the two components will fuse or weld together. The tool is frequently pulled closer to generate a spark, then moved away to allow flushing and reduce the risk of fusing with the workpiece.

mold base making by EDM machine

EDM Machining Types

Machining with a sinker discharge is called die EDM, classical EDM, or the Ram EDM technique. It can make intricate geometries that are impossible to achieve using wire EDM. Graphite or copper is often used as the electrode material. It is typically machined into a precise form that is the inverse of the intended final geometry of the item.

After the electrode has been sculpted, a process known as “electrode wear” causes the workpiece to be damaged by sparks to form the appropriate geometry. Sinker EDM, in contrast to Wire EDM machining, is capable of performing both partial cuts and cuts that go all the way through the workpiece.

brass electrodes

Wire Cutting Electrical Discharge Machining

In this form of EDM, a wire is utilized as an electrode. The wire is continually and automatically fed during the operation using a spool. Ionized water is typically used as the fluid, and brass or copper is typically used for the wire.

To assure compatibility and prevent corrosion, it is highly advised that the workpiece material and wire electrode materials be inspected to identify the appropriate process parameters for the electrical discharge machining technique. Since wire electrodes are used to cut the workpiece, it is only possible to make cuts that go through the entire thickness of the workpiece.

Hole Drilling

Drilling is performed with the third type of EDM, which is known as electric discharge machining. Compared to more traditional drilling technologies, hole drilling EDM can create tiny and deep holes, which are notoriously tricky. In addition, hole drilling using EDM is exceptionally clean and does not call for any deburring to be done.

The electrodes used in this technique take the form of tubular structures, and the dielectric fluid is circulated through them. The electrode erodes or slices the workpiece in a way analogous to the other EDM machining forms. Still, the electrode never makes contact with the workpiece because of the discharged gap. Compared to the deflection the drill bit experienced during conventional drilling techniques, this results in significantly less bending of the tube electrode.

Machine Components:

While the three varieties of EDM are used differently, the structure of each system is the same. It includes the following:

Computer Numerical Control (CNC) is the unit that processes the tool’s route. Several software packages can simulate and design these CNC codes for your geometry.

Voltmeters and ammeters are electrical potentials and current measuring instruments.

Stromversorgung: the source of energy for the spark.

Material to be cut: workpiece

Cutter: a tool for cutting the workpiece.

The dielectric fluid acts as a barrier between the cutter and the workpiece. It also regulates the electrical discharge and absorbs heat during the operation, allowing the workpiece to cool. Another function of the dielectric fluid is debris removal.

The filter maintains the dielectric fluid’s state (resistivity/conductivity), water temperature, and other parameters. Debris that could alter such conditions is filtered away, keeping the system clean.

Pump: regulates the dielectric fluid flow, allowing the EDM-Bearbeitung equipment to function constantly.

Fixtures are boards, jig tools, and other work-holding systems that keep the workpiece and cutter steady and in place.

Double-head EDM machine working on a mold

EDM Machining Characteristics:

Dielectric fluid is used in EDM to submerge the electrode and the workpiece. It removes material from the workpiece by eroding or slicing it with an electric spark to achieve the appropriate shape. CNC programs control the electrode’s motion, and it’s essential to grasp a few fundamentals to ensure a smooth procedure.

Discharge Gap:

To generate sparks between the electrode and the workpiece, there must be a space, sometimes called a “discharge gap,” which is usually in the 0.005 – 1 mm range. Sparks are not produced if the electrode and the workpiece are in touch. A servo mechanism in the EDM system regulates this gap and the movement of the electrode.

Electrode Wear Ratio:

This ratio is calculated by dividing the volume of material lost from the tool electrode by the amount of metal retrieved from the workpiece. It is sometimes represented as a percentage of the overall mass loss of the instrument divided by the total amount of work done.

Polarity

In this approach, one must be positive and the other negative to apply a voltage between the workpiece and the electrode. So when the electrode is negative and the workpiece is positive, it is usual practice to refer to the situation using the term “positive polarity” or simply “polarity.” Likewise, when the electrode is positive and the workpiece is negative, this configuration is referred to as having “reverse polarity.”

We suggest you become familiar with the mix of the electrode and workpiece materials you will use to identify which settings and process parameters will work best for your application. Polarity can affect the rate of material removal, often known as the “electrode wear ratio,” as well as the surface roughness, which in turn can affect wear, speed, and stability.

EDM Machining

Removal Rate

The pace at which the spark eliminates material from the workpiece. Common mass or volume units, such as [g/min] or [mm3/min], are used in quantification.

Schlussfolgerung:

In conclusion, this article has covered the fundamentals of electrical discharge machining. With the knowledge gained from this article, we hope that you can confidently incorporate EDM into your production toolkit, knowing its advantages and limitations and how it compares to other techniques.

The post EDM Machining: Understanding the Operation, Characteristics, and Components appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/edm-machining/feed/ 0
Wie funktioniert die Fertigung auf Abruf? https://prototool.com/de/on-demand-manufacturing/ https://prototool.com/de/on-demand-manufacturing/#respond Tue, 10 Jan 2023 12:22:33 +0000 https://prototool.com/?p=8534 How Does On-Demand Manufacturing Work?
Prototool

The term “manufacturing” is most commonly linked with large-scale manufacturing plants and assemblies with complicated machines continuously churning out various goods. While this manufacturing approach is common and traditional, a rapidly growing manufacturing model is gaining popularity as it solves several of the limitations inherent in traditional manufacturing. This is referred to as on-demand manufacturing. […]

The post How Does On-Demand Manufacturing Work? appeared first on Prototool written by Prototool.

]]>
How Does On-Demand Manufacturing Work?
Prototool

Der Begriff "Fertigung" wird meist mit großen Produktionsanlagen und Baugruppen mit komplizierten Maschinen in Verbindung gebracht, die ununterbrochen verschiedene Waren ausstoßen. Diese Art der Fertigung ist zwar weit verbreitet und traditionell, aber ein schnell wachsendes Fertigungsmodell gewinnt an Popularität, da es einige der Einschränkungen der traditionellen Fertigung löst. Dieses Modell wird als On-Demand-Fertigung bezeichnet.

Fertigung auf Abruf wird zum Trend

Was genau ist "Fertigung auf Abruf"?

On-Demand-Manufacturing, auch bekannt als Custom Manufacturing oder Cloud Manufacturing, ist ein Fertigungssystem, bei dem Dinge nur bei Bedarf und in der benötigten Menge hergestellt werden. Diese neue Technik unterscheidet sich von der traditionellen Fertigung, bei der Dinge in Massenproduktion hergestellt und in Anlagen gelagert werden, bis sie verkauft, verteilt und ausgeliefert werden. Faktoren, die die Ausweitung der On-Demand-Fertigung fördern.

Was beeinflusst das Wachstum der bedarfsgesteuerten Fertigung?

Wir leben in einer schnelllebigen Gesellschaft, in der der größte Teil unseres Bedarfs, z. B. an Lebensmitteln, Wohnraum, Transportmitteln usw., dank der Fortschritte in der IT- und Logistikinfrastruktur auf Abruf gedeckt werden kann. Folglich ist der Übergang von der traditionellen Fertigung zum On-Demand-Modell ganz natürlich. Zu den Faktoren, die zu diesem Übergang beigetragen haben, gehören unter anderem:

Ausrüstung für die Herstellung von Gegenwartsprodukten

In den Anfängen der Fertigung wurden Methoden wie der Produktionsprozess mit Fließband eingesetzt. In dieser Zeit gab es keinen Raum für eine kundenindividuelle Fertigung oder die Produktion von Losen mit geringen Stückzahlen. Moderne Fertigungstechnologien wie die CNC-Bearbeitung (Computer Numerically Controlled) und dreidimensionaler Druck hat unsere Vorstellung von dem, was machbar ist, grundlegend verändert. Sie sind nicht nur in der Lage, Serien mit geringen Stückzahlen zu produzieren, sondern auch alle Spezifikationen für eine maßgeschneiderte Fertigung zu erfüllen.

Industrie 4.0:

Die Entwicklung von Industrie 4.0 hat auch dazu beigetragen, die Idee der "Fertigung auf Abruf" voranzutreiben. Dank der Verfügbarkeit von Lösungen wie der cloudbasierten Technologie gehen die Unternehmen zu einem neuen Modell über. Dieses neue Modell ermöglicht es, dass historisch gesehen interne Teams digital interagieren, was die Entwicklung und Umsetzung von Verbesserungen erleichtert.

Logistik:

Der Aufstieg des elektronischen Geschäftsverkehrs hat zu einer tiefgreifenden Umgestaltung des Logistiknetzes auf globaler Ebene und innerhalb der Grenzen der einzelnen Länder geführt. Die Größe der zu befördernden Gegenstände ist in keiner Weise eingeschränkt, und die Geschwindigkeit, mit der sie befördert werden können, hat sich um ein Vielfaches erhöht. Dadurch können die Verbraucher ihre Bestellungen jederzeit zu einem festen Zeitpunkt erhalten, was die Notwendigkeit von Massenproduktion.

Digitale Fertigung

Durch den Einsatz von digitale Fertigungsverfahrenkönnen die Hersteller etwaige Engpässe und Probleme erkennen und beseitigen. Sie können auch die Qualität des Produkts verbessern und Anpassungen vornehmen, die von den Kunden gewünscht werden. Ein Fertigungsprozess, der sich an der Nachfrage der Verbraucher orientiert, verbessert letztlich sowohl die Produktionsrate als auch die Erfahrung, die den Kunden geboten wird.

digitale Fertigung

Die Vorteile der On-Demand-Fertigung

Diese Art der Herstellung hat mehrere Vorteile gegenüber der herkömmlichen Produktion.

Die Fertigung auf Abruf hat verschiedene Vorteile gegenüber der herkömmlichen Fertigung. Diese Vorteile kommen einer Vielzahl von Gruppen zugute, darunter Hersteller, Kunden, Endverbraucher und andere. Einige der Vorteile werden im Folgenden erörtert.

Geringe Produktionsvolumina und individuelle Anpassung:

Die Anforderungen der Endverbraucher sind sehr unterschiedlich, ebenso wie ihre Wünsche und persönlichen Vorlieben. Die On-Demand-Fertigung ermöglicht es den Herstellern, das zu liefern, was die Verbraucher in Bezug auf Menge und Fertigungsspezifikationen wünschen.

Andererseits macht es die typische Produktionsstrategie einem Verbraucher fast unmöglich, ein personalisiertes Produkt zu verlangen. Das liegt daran, dass die Hardware-Anordnung in den traditionellen Produktionsstätten feststeht und jede wesentliche Änderung unerschwinglich wäre. Darüber hinaus wäre es äußerst ineffizient, eine Standardproduktionsanlage zur Herstellung einer begrenzten Anzahl von Produkten zu verwenden.

Im Gegensatz dazu kann ein Kunde bei dieser Art der Fertigung einen einzelnen Prototyp bestellen, egal wie komplex er ist, und ihn schnell herstellen und liefern lassen. Die kundenspezifische Fertigung ist in vielen Bereichen von entscheidender Bedeutung, auch im medizinischen Bereich.

Geringere Lager- und Logistikkosten für Hersteller:

Die traditionelle Herstellung erfordert komplizierte logistische Verfahren. Nach der Massenproduktion eines Produkts muss das Unternehmen über ein ausgeklügeltes und versichertes Lager- und Inventarsystem verfügen. Hinzu kommt ein solides Verkaufsnetz für die Vermarktung und den Vertrieb der Produkte. Darüber hinaus muss der Hersteller eine Transport-/Logistikinfrastruktur bereitstellen, verwalten und unterhalten. All dies trägt zu einem exponentiellen Anstieg der Herstellungskosten bei.

Die Herstellung auf Abruf senkt die Logistikkosten erheblich, da die Lagerung, Versicherung, Vermarktung und Auslieferung vorgefertigter Produkte entfällt. Die Massenproduktion in der traditionellen Fertigung, so könnte man behaupten, spart aufgrund von Größenvorteilen Geld. Da das On-Demand-Konzept jedoch sehr anpassungsfähig ist, kann es sowohl für die Herstellung von Einzelstücken als auch für die Produktion von Tausenden von Stückzahlen eingesetzt werden.

Export-Logistik

Mehr Einsatz von kleinen und mittleren Technologien

Die Kosten für die Errichtung einer herkömmlichen Fertigungsanlage sind aufgrund der großen Anzahl der in der Regel hergestellten Produkte enorm, wobei eine einzelne Maschine Millionen von Euro kostet. Dagegen können Manufacturing-on-Demand-Systeme kleine Stückzahlen kostengünstig herstellen, da sie mit wesentlich preiswerteren Anlagen arbeiten. Dies ermöglicht es kleinen und mittleren Unternehmen, Produktionsanlagen in kleinem Maßstab zu errichten.

Mehr Produktkontrolle und weniger Abfall:

Die geschätzte Verbrauchernachfrage bestimmt das Volumen der in der konventionellen Fertigung hergestellten Produkte. Diese Schätzung ist anfällig für Ungenauigkeiten und birgt die Gefahr, dass das Angebot die Nachfrage übersteigt. Die gelagerten Produkte sind auch anfällig für Schäden, saisonale Nachfrageschwankungen und unvorhersehbare Ereignisse. Während der Coronavirus-Pandemie im Jahr 2020 zum Beispiel waren einige Unternehmen aufgrund der weltweiten Sperrung ihrer Lager mit ihren Produkten aufgeschmissen. Solche Umstände führen zu Verlusten und Abfällen, die eine Bedrohung für die Umwelt darstellen können. Im Paradigma der bedarfsgesteuerten Produktion kann das Angebot niemals die Nachfrage übersteigen, da das Angebot immer auf Nachfrage geschaffen wird.

Dieses Herstellungsverfahren spart auch eine Menge Ressourcen, die sonst für die Herstellung von Produkten benötigt würden, die möglicherweise nie verwendet werden. Die Hersteller können sich darauf verlassen, dass sie 100% eines jeden hergestellten Produkts verkaufen werden, da sie nur Dinge herstellen können, die sie bereits verkauft haben.

Steigert den Erfindungsreichtum

Die regelmäßige Verbindung zwischen Kunde und Hersteller, die kurzen Vorlaufzeiten, die Flexibilität, die niedrigen Kosten und die betriebliche Transparenz der Auftragsfertigung haben das Tempo der technischen Innovation erheblich gesteigert. Innovatoren und Tüftler können Waren entwerfen und in Rekordzeit und zu geringen Kosten einen einzigen Prototyp herstellen lassen. Der Prototyp kann dann zur Feinabstimmung des Produkts verwendet werden, was zu einer kurzen Markteinführungszeit führt.

Die Kombination aus CAD und On-Demand-Fertigung hat die Zahl der wunderbaren Produkte, die täglich auf den Markt kommen, deutlich erhöht. Lesen Sie die Geschichte unseres Kunden, der in kurzer Zeit ein Gerät zur Bekämpfung der COVID-Pandemie entwickelt hat. Früher konnten sich nur riesige Unternehmen die Kosten für die Erforschung, Entwicklung, Prototypisierung, Prüfung und Herstellung eines neuen Produkts leisten. Heute kann fast jeder, der ein gutes Konzept hat, dieses in die Tat umsetzen.

Technologien, die bei diesem Herstellungsansatz verwendet werden:

Es gibt zahlreiche Technologien, die in einem Fertigungssystem auf Abruf eingesetzt werden können. Dies sind einige der Technologien:

Ø  Dreidimensionaler Druck

Für kleine Produktionsserien, z. B. für Prototypen, ist der 3D-Druck zu einer der gängigsten Fertigungstechnologien geworden. Das Verfahren ist relativ kostengünstig, auch wenn die Präzision in gewissem Maße beeinträchtigt wird. Es ist wichtig zu betonen, dass 3D-gedruckte Objekte nur aus kunststoffbildenden Materialien hergestellt werden können.

3d-Druck

Ø  Stereolithographie (SLA) (SLA)

Stereolithographie (SLA) ist eine Unterart des 3D-Druckverfahrens. Es ist auch als Harzdruck, optische Fertigung und Bottich-Photopolymerisation bekannt. Dabei wird ein leistungsstarker Laserstrahl verwendet, der auf ein Photopolymerharz gerichtet ist. Die CAD-Dateien definieren die Bewegung des Strahls. Schicht für Schicht härtet das flüssige Harz aus und formt das endgültige Teil.

Ø  Modellierung von Fused Deposition (FDM)

Fused Filament Fabrication (FDF) ist ein anderer Name für Fused Deposition Modeling (FDM) (FFF). Dieser Ansatz ist eine Unterart des 3D-Drucks. Dabei wird ein Drahtfilament verwendet, das über eine Spule zum Druckkopf geführt wird, wo es geschmolzen und zu dem gewünschten Gegenstand geformt wird, während sich der Kopf im Tandem mit dem Computer bewegt.

Ø  Laser-Sintern mit Vorzug (SLS)

SLS ist eine Art additive Fertigungstechnologie, bei der ein Laser ein Pulver aus Nylon oder Polyamid sintert, um es in der gewünschten Form zu verfestigen. Ein Computer, ähnlich wie bei einer 3D-Druckmaschine, steuert die Bewegung des Lasers. Dieses Verfahren wird nur für die Herstellung von Kleinserien und schnellen Prototypen verwendet.

Direktes Metall-Lasersintern (DMLS) DLMS ist dem SLS sehr ähnlich, mit dem Unterschied, dass beim DLMS das Produkt aus Metallpulver hergestellt wird. Dieses Verfahren wird in der Regel zur Herstellung von robusten, leistungsstarken Komponenten verwendet, die nicht aus Polymeren wie Nylon oder Polyamid hergestellt werden können.

Ø  CNC-Fertigung

Die CNC-Bearbeitung gibt es schon seit einiger Zeit. Mit der Weiterentwicklung dieser Fertigungsverfahren wurden die Vorteile der CNC-Bearbeitung effektiv genutzt. Sie eignet sich für praktisch alle Materialien und bietet eine unübertroffene Präzision. Es gibt zahlreiche Arten von CNC-Maschinen, jedes mit seinem eigenen Zweck und seinen eigenen Anforderungen an das Design.

Ø  Gießen durch Einspritzen

Das Spritzgießen ist eine weitere bekannte Fertigungstechnik, die lokal oder in großem Maßstab eingesetzt werden kann. Ein Harz auf Kunststoffbasis wird in eine Form gespritzt, um die gewünschte Teileform herzustellen. Es handelt sich ebenfalls um ein kostengünstiges Produktionsverfahren mit begrenzter Präzision.

Ø  Blechumformung

Bei der Blechumformung wird ein flaches Metallblech in das gewünschte Teil umgewandelt. Die Form des Teils wird durch Verformung des Bleche mit verschiedenen Methoden. Obwohl es ein einfaches Verfahren zu sein scheint, ist es sehr kostspielig. Einige innovative inkrementelle Blechumformungstechnologien können hingegen dazu beitragen, die Kosten zu senken und gleichzeitig eine gute Qualität beizubehalten.

Schlussfolgerung:

Während die traditionelle Fertigung heute das wichtigste Fertigungsparadigma ist, verändert die On-Demand-Fertigung den Sektor schnell, beschleunigt das Innovationstempo und macht die Fertigung für Einzelpersonen und Unternehmen gleichermaßen zugänglich. Daher ist es nie zu spät, sich für On-Demand-Fertigungsdienstleistungen zu entscheiden und deren Vorteile und Funktionen mit erfahrenen Dienstleistern wie First Part selbst zu erleben.

Kontakt zu unserem Experten noch heute für weitere Informationen und Fragen zur Verfügung.

The post How Does On-Demand Manufacturing Work? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/on-demand-manufacturing/feed/ 0
Die vollständige Einführung von Formteilen https://prototool.com/de/mold-parts/ https://prototool.com/de/mold-parts/#respond Thu, 05 Jan 2023 15:11:50 +0000 https://prototool.com/?p=8478 The complete introduction of mold parts
Prototool

Injection molding is primarily a phenomenon in the manufacturing processes of plastic. It is a manufacturing process that involves shaping a liquid or malleable raw material with the help of a fixed frame, also known as a mold or a matrix. A mold is a hollow cavity receptacle, usually made of metal, into which liquid […]

The post The complete introduction of mold parts appeared first on Prototool written by Prototool.

]]>
The complete introduction of mold parts
Prototool

Spritzgießen is primarily a phenomenon in the manufacturing processes of plastic. It is a manufacturing process that involves shaping a liquid or malleable raw material with the help of a fixed frame, also known as a mold or a matrix. A mold is a hollow cavity receptacle, usually made of metal, into which liquid plastic, metal, ceramic, or glass is poured. Other mold parts are used for the manufacturing processes of plastics.

Schimmelteile

Different Kinds of Molding Processes

Plastic is a synthetic substance that can be molded into any shape using a variety of molding techniques. Different mold components are used during these molding procedures. Both procedures entail working with molten plastic before letting it cool. Thermoplastische Kunststoffe, unlike thermoset plastics, can be melted and molded if necessary. The manufacturing of plastic is facilitated through the use of various molding processes. These molding processes are listed below.

Casting-

This is one of the most straightforward processes out of all molding processes. The process uses only a few mold parts and is cost-efficient as well. Plastic is heated until it becomes fluid and then poured into the mold. It is allowed to cool before the mould is removed. This process is suitable for intricate shapes and can be carried out under low pressure.

Casting Mold

Extrusion Molding-

The process facilitates molding the plastic or metals in a pre-defined shape and form. The plastic is melted and pushed through a die to create a linear structure. The die is one of the unique mold parts used for extrusion molding. The final shape commonly referred to as a rod but not necessarily cylindrical, is cooled and can be cut to various lengths depending on the application.

Extrusion Mold

Compression Molding-

The process of compression molding involves using the raw liquid form of plastic and its compression in a mold to form the desired shape of the part. The benefit of the high temperature being used during the process is the added strength of the metal. The product is cooled for some time before removing it from the mold. The process is mainly used in the automotive industries, where small parts are required in high numbers.

Blow Molding-

The machine heats the raw plastic until it becomes liquid, then inflates it like a balloon with air. The plastic is blown into a shaped mold, pressed against the walls, and begins to take shape. The liquid balloon is cooled after filling to keep its form. The process is swift, with the ability to produce up to 1400 pieces in a 12-hour workday. The advantage of the process is that through the standard technique, a plastic part quickly obtains a uniform Wandstärke. Blow molding requires different mold parts for its entire process than other molding processes.

Blow Mold

Rotational Molding-

This method involves placing the hot liquid metal inside the mold and then rotating it at high speeds. The liquid then evenly coats the entire surface, resulting in a hollowed part with uniformly thick walls. After the mold has cooled and the liquid plastic has taken its new shape, it is removed from the mold. The advantage of this process is that raw material rarely goes to waste. Hence, it is an environmentally efficient process.

Injection Molding-

The most important and commonly used manufacturing process for producing plastic or metal parts is Injection Molding. The process is similar to extrusion molding. The liquid metal is directly inserted or injected into the pre-existing custom mold during this process. The injection’s high pressure facilitates the mold’s filling and solidification.

Spritzgussform

This is a standard method for producing large quantities of plastic parts, such as car or surgical parts. It is commonly adapted when the parts required annually are above 30,000. Products can also be manufactured with greater flexibility to meet the specific requirements of designers or engineers. Despite the process being used for expensive metals, the process proves to be cost-effective considering the production volume.

How does injection Molding work?

Regarding these manufacturing processes, injection molding is the most commonly used. It is preferred the most because it contributes to producing highly identical plastic parts. The method also facilitates design flexibility. Injection molding is used to manufacture most parts, from car parts to electronic enclosures and kitchen appliances. However, injection molding has comparatively high start-up costs compared to other technologies, primarily due to customized tooling requirements. Depending on its complexity, accuracy, and material (steel or aluminum), the financial cost of the whole process varies.

Eine Spritzgießmaschine consists of three main parts: the injection, the mold, and the Schließeinheit. These are all parts essential for the molding process.

Injection Unit

The injection unit facilitates the melting of the raw plastic and guides it into the mold. It comprises smaller and more fundamental mold parts such as the Trichter, the Fass, and the reciprocating screw. The polymer granules are mixed with the coloring pigment or other reinforcing additives in the hopper after being dried and deposited in the injection unit. The material is heated, mixed, and moved in the direction of the mold as the granules are supplied into the barrel by a variable-pitch screw. The barrel and screw geometry have been carefully chosen to help increase the pressure to the required levels and melt the material.

As the ram moves forward, the melted plastic will be injected into the mold via the runner system, filling the void. The substance reconsolidates and adopts the shape of the mold as it cools. The mold finally opens, forcing the solidified item out by the ejector pins. After that, the mold shuts, and the procedure is repeated. All the mold parts have a core role in the manufacturing part of the plastic parts from the polymer granules.

Manufacturing Of The Mold

The mold is one of the parts used in manufacturing the parts that form the majority of the upfront cost of the whole process. A mold is a hollow metal block into which the molten and processed plastic is injected to form a custom fixed shape. The geometrical shape and dimensions of the mold are transferred into the injected part. Due to the high price of the mold, there are now variations of the mold with flexible features and designs. However, the simplest of this mold is the straight-pull model.

The anatomy of the straight-pull model is discussed. It has several mold parts that facilitate the manufacturing process. The mold consists of 2 halves: the cavity und the core. Injection molded parts have two sides. The A side of an injection-molded object faces the cavity, and the B side faces the core (back half of the mold). The A-side, or the cosmetic side, typically has a better outward look. According to your design requirements, the faces on the A side will either be smooth or textured.

On the other hand, the part’s concealed but crucial structural components are typically found on the B side. It is referred to as the functional side for this reason. The B side frequently has a rougher surface and obvious ejector pin markings.

Cavity and Core

The Runner System

The mold parts have a crucial role in injecting the liquid material into the mold for the final procedure. The channel that guides this liquid material into the mold is called the runner system. The runner system usually regulates the flow and the pressure with which the liquid is injected into the mold. This runner system further consists of three sectional parts or mold parts.

  • Die Anguss is known as the main passageway down which the melted plastic initially flows when it enters the mold.
  • The runner joins the spur to the gates by spreading the molten plastic along the face where the two sides of the mold converge. The substance may be directed toward one or more portions by one or more runners. After ejection, the runner system is disconnected from the component.
  • Die Tor (is the point at which material enters the cavity. Its geometry and position are crucial because they affect the plastic flow.

These gates are also available alternatively for different applications. The different kinds of gates are listed below.

  1. Edge gates- The most common gate is an edge gate, which injects material when the two parts of the mold split.
  2. Tunnel gates inject material just below the parting line. To completely eradicate the requirement for manual removal, the runner system snaps off when the part is expelled from the mold. Because of this, this kind of gate is perfect for high volumes.
  3. Post gates infuse the substance from the cavity’s backside, concealing the minor flaw that remains after breaking the other gate kinds. These gates are utilized for components that need to look fantastic.
  4. Hot tips- Directly attached to the spur, hot tips inject plastic into the part’s upper side. In this way, none of the material goes to waste.
Runner Design

Clamping System

The clamping system is on the opposite side of an injection molding machine. The clamping mechanism serves two purposes: it forces the part out of the mold after it opens and tightly seals the two parts of the mold during the injection.

These parts form this whole system that facilitates the manufacturing process. The mold parts are efficiently structured in the way that the injection molding is made possible. The molding is further used to produce high volumes of individual plastic or metal parts that are used in different industries.

Schlussfolgerung

Molding typically occurs during the plastics production process. A fixed frame sometimes referred to as a mold or a matrix, is used in the manufacturing process of molding to shape a liquid or pliable raw material. There are different types of molding processes, such as casting, extrusion, compression, etc., which together make the complete molding chain.

The post The complete introduction of mold parts appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/mold-parts/feed/ 0
Minutenweiser Austausch von Werkzeugen in der Automobilindustrie https://prototool.com/de/single-minute-exchange-of-die/ https://prototool.com/de/single-minute-exchange-of-die/#respond Sat, 24 Dec 2022 13:30:49 +0000 https://prototool.com/?p=8280 Single Minute Exchange of Die in the Automotive Industry
Prototool

SMED or Single Minute Exchange of Die is the process of minimizing changeover or setup time. It entails identifying and eliminating any unneeded aspects of the transition process. When a piece of industrial equipment needs to be replaced, the downtime can be costly and unexpected. SMED is essential to lean manufacturing since it may eliminate […]

The post Single Minute Exchange of Die in the Automotive Industry appeared first on Prototool written by Prototool.

]]>
Single Minute Exchange of Die in the Automotive Industry
Prototool

SMED (Single Minute Exchange of Die) ist ein Verfahren zur Minimierung der Umstellungs- oder Einrichtungszeit. Dabei werden alle nicht benötigten Aspekte des Umstellungsprozesses identifiziert und eliminiert. Wenn ein industrielles Gerät ersetzt werden muss, kann die Ausfallzeit kostspielig und unerwartet sein. SMED ist für die schlanke Fertigung von entscheidender Bedeutung, da es Verschwendung beseitigen, die Produktivität steigern und Kosten senken kann.

Austausch von Würfeln in einer Minute

Es steckt jedoch viel mehr dahinter, was diese Strategie ist, was sie bringt und wie sie sich auswirkt, als eine einfache, vollständige Bedeutung, wenn es darum geht, sie zu übernehmen. Schauen wir uns alles im Detail an.

Die Grundlagen des Single-Minute Exchange of Die:

Das SMED-System ist ein Lean-Manufacturing-Prinzip, das mit weniger mehr erreicht und dem Kunden einen maximalen Wert bietet. Sein Ziel ist es, die Zeit zu verkürzen, die für die Umrüstung von Maschinen benötigt wird. Dies ist ein Anreiz für das Werkspersonal, so viele Prozesse wie möglich vor der Umstellung abzuschließen, Teams parallel arbeiten zu lassen und einen standardisierten und optimierten Arbeitsablauf zu haben.

Ziel ist es, die Umrüstzeit von Stunden auf weniger als zehn Minuten zu verkürzen, also den einminütigen Austausch von Werkzeugen. Matrizen sind spezielle Fertigungswerkzeuge, die bei einem Wechsel der Produktionsmodelle neu eingerichtet werden müssen, was zu Ausfallzeiten führt. Shigeo Shigo, ein japanischer Wirtschaftsingenieur, gilt als Erfinder des SMED-Systems. Mit dieser Strategie konnte er die Umrüstzeiten in den von ihm betreuten Unternehmen um 94% reduzieren. Es ist nur manchmal möglich, die Maschinenwechselzeit auf weniger als 10 Minuten zu reduzieren, aber in den meisten Fällen ist dies erreichbar.

Warum ist SMED wichtig?

Die schlanke Produktion zielt darauf ab, Verschwendung zu minimieren und die Effizienz innerhalb eines bestimmten Systems zu steigern, wo immer dies möglich ist.

Nach der Lean-Methode ist die Verschwendung einer der drei Schlüsselbereiche, die angegangen werden müssen: der Verlust von Muda, Muraund Muri. Single Minute Exchange of Dies ist für diese drei Arten von Abfall verantwortlich. Das Hauptproblem ist jedoch die Beseitigung von Mura (Unebenheiten).

Um die Erwartungen der Kunden zu erfüllen, muss jede kleinere Charge verarbeitet werden können, um einen reibungslosen und vorhersehbaren Prozessablauf zu gewährleisten. Die ständige Notwendigkeit, die Ausrüstung zu aktualisieren, ist das Haupthindernis für die Herstellung kleinerer Mengen. Diese Änderungen sind zeitaufwändig und kostspielig und müssen auf praktische Weise wieder hereingeholt werden, um rentabel zu sein.

Da die Umrüstungszeit für einige Maschinen mehrere Stunden oder sogar Tage dauern kann, ist es notwendig, die Produktion bestimmter Maschinen in Bezug auf ihre produktive Zeit zu maximieren. Da die Losgröße maximiert wird, führt dies zu einer möglichst effizienten Nutzung der verfügbaren Ressourcen. Erst wenn der Prozess geändert werden muss, werden Ineffizienzen sichtbar.

Geringere Rüstzeiten bei jeder Umstellung sind eine wesentliche Voraussetzung für die wirtschaftliche Produktion kleinerer Chargen. Daher muss das interne Rüsten so weit wie möglich minimiert werden, damit sich die Umrüstzeit so wenig wie möglich auf den Fertigungsprozess auswirkt.

Seine Bestandteile:

Bei SMED (Single Minute Exchange of Dies) werden Umrüstungen durch eine Reihe von Prozessen vorgenommen, die als Elemente bezeichnet werden. Die Komponenten werden in zwei Typen unterteilt:

Interne Komponenten

Diese Elemente müssen angewandt oder aktualisiert werden, nachdem das Gerät ausgeschaltet wurde. Beispiele hierfür sind:

  • Beseitigung veralteter Werkzeuge.
  • Sie zu ersetzen.
  • Einstellen des Materialvorschubs.
  • Ändern der Programmparameter.

Stellen Sie sich dies wie einen Boxenstopp in der Formel 1 vor. Das Auto fährt in die Boxengasse, hält an und die Crew-Mitglieder wechseln die Reifen.

Externe Faktoren

Wenn das Gadget in Gebrauch ist, können externe Elemente angewendet oder hinzugefügt werden. Der Kauf neuer Materialzuführungen, die Anschaffung neuer Werkzeuge, die Rückgabe alter Werkzeuge oder die Lagerung alter Werkzeuge, die Dokumentation geeigneter Verfahren oder die Beantragung von Lizenzen sind einige Beispiele. Während sich das Auto noch auf der Rennstrecke befindet, bereitet das Team bereits die Reifen vor, bereitet Werkzeuge vor und positioniert Techniker. So kann die Mannschaft den gesamten Vorgang in Sekundenschnelle abschließen, sobald das Auto zum Stehen kommt.

SMED-Verfahren:

Das SMED-Verfahren (Single Minute Exchange of Dies) besteht aus mehreren Schritten. Sie können diesen LEAN-Ansatz umsetzen, indem Sie:

1. Trennen Sie interne und externe Einrichtungsprozesse.

In diesem Schritt werden die am Umstellungsprozess beteiligten Elemente identifiziert, die bei laufender Produktion mit geringen oder gar keinen Änderungen verwaltet werden können, und dann vor oder nach der Umstellung durchgeführt. Dieses Verfahren führt in der Regel zu einer Verkürzung der Umstellungszeiten um 50%.

Das Team muss sich fragen, ob jedes Element und jeder Teilprozess während des Betriebs der Anlage durchgeführt werden kann. Wenn die Antwort "Ja" lautet, ist das Element extern.

2. Standardisierung der externen Konfigurationsprozesse

In dieser Phase können alle externen Phasen durch Filme oder Flussdiagramme identifiziert und standardisiert werden. Das bedeutet, dass Sie solche Aufgaben bei laufendem Verfahren erledigen können. Wenn dies nicht sorgfältig gemacht wird, kann es vorkommen, dass die Werkzeuge bei stillstehenden Maschinen geholt werden müssen. Dadurch verlängert sich die Umrüstzeit über das notwendige Maß hinaus.

3. Interne Rüstvorgänge in externe Rüstvorgänge umwandeln

In diesem Schritt wird der Umstellungsprozess eingehend untersucht, um so viele interne Elemente wie möglich zu externen zu machen. In diesem Schritt muss das Team überlegen, ob es eine Möglichkeit gibt, interne Elemente in externe umzuwandeln, wie dieser Ansatz aussehen könnte und wie er umzusetzen ist.

Das Ergebnis ist eine Liste von Punkten, die Sie weiterverfolgen können. Diese Prioritätenliste ähnelt in mehrfacher Hinsicht einer Kosten-Nutzen-Analyse.

4. Verbesserung der internen Kommunikationsprozesse

Erst die letzte Umdrehung der Schraube fixiert das Teil an seinem Platz. Shigeo Shingo sagte einmal. Was danach übrig bleibt, ist nur Bewegung, und die kann man wegwerfen.

Das Konzept sieht vor, dass beispielsweise die Schraube durch kürzere, federbelastete Klemmen ersetzt werden kann, die das Teil in Position halten. Die Zeit, die bisher für das Drehen der Schraube aufgewendet wurde, wird nun eingespart. Verschiedene Maschinen oder Werkzeuge werden modifiziert, um Standardgrößen bereitzustellen. Darüber hinaus können Sie auch Befestigungspunkte reduzieren, um die Anzahl der Arbeitsschritte zu verringern.

5. Verbessern Sie die externen Einrichtungsverfahren

Die übrigen externen Elemente werden in diesem Schritt bewertet. Es geht darum, diese Prozesse zu straffen und zu vereinfachen, um Zeit zu sparen.

Wie bei den vorherigen Schritten prüft das Team, wie dieser Teil in kürzerer Zeit durchgeführt werden kann. Wie können wir dies einfacher gestalten? Eine Kosten-Nutzen-Analyse ist ebenfalls nützlich, um zu beurteilen, ob es effizient genug ist.

6. Wiederholen Sie SMED mehrere Male.

Sie können regelmäßig Zeit einsparen, indem Sie den gesamten Prozess immer wieder akribisch analysieren. Neue Technologien oder andere wichtige Erkenntnisse bieten zum Beispiel Chancen, den Prozess per Videoanalyse zu optimieren.

Die Vorteile:

Die folgenden Vorteile werden realisiert, wenn das Konzept des einminütigen Werkzeugwechsels richtig angewendet wird. Von allen Vorteilen bietet der einminütige Matrizenwechsel (Single Minute Exchange of Dies, SMED) vor allem eine höhere Produktivität. Lassen Sie uns nun auf einige weitere Vorteile eingehen:

  • Gesteigerte Produktivität: Wenn der Zeitaufwand für Umrüstungen reduziert wird, erhöht sich die Anzahl der in einem vereinbarten Zeitraum produzierten Waren und die Arbeitszeiten steigen. Nicht wertschöpfende "Muda" wird eliminiert.
  • Ein flexibler Herstellungsprozess ist denkbar: weil es möglich ist, nur eine bescheidene Menge an Gütern zu produzieren und weil der Wechsel zwischen verschiedenen Arten von Gütern einfach ist.
  • Verbesserte Kundenzufriedenheit: Sie führt zu einer höheren Kundenzufriedenheit, weil ihre Bedürfnisse rechtzeitig erfüllt werden.
  • Verbesserung der Produktqualität: Dies trägt dazu bei, die Anzahl der beim Einrichten der Maschinen erzeugten fehlerhaften Waren zu verringern.
  • Senkung der Kosten für die Instandhaltung der Bestände: Die schlanke Produktion, bei der weniger produziert wird und keine Produkte mehr gelagert werden müssen, senkt die mit der Bestandsverwaltung verbundenen Kosten.
  • Senkung der Wartungskosten: Da weniger manuelle Eingriffe, Anpassungen und Stapelungen erforderlich sind, verringert sich das Risiko, dass Stanzformen herunterfallen, anschlagen oder physisch beschädigt werden.
  • Weniger Unfälle am Arbeitsplatz: Die Zahl der Arbeitsunfälle während dieses Prozesses ist aufgrund des einfacheren und kürzeren Vorbereitungsprozesses zurückgegangen.

Schlussfolgerung:

Das Ziel der digitalen schlanken Fertigung ist die Beseitigung von Verschwendung. Die Hersteller ergreifen Initiativen zur Verbesserung der Materialabläufe nach dem Auswechseln, um noch schnellere Anlaufzeiten zu erreichen, indem sie SMED (Single Minute Exchange of Dies) einsetzen. Eine intelligente, vernetzte Fertigungslinie gibt den Unternehmen noch mehr Informationen über den Betrieb und die Effizienz ihrer Produkte.

The post Single Minute Exchange of Die in the Automotive Industry appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/single-minute-exchange-of-die/feed/ 0
Formen für Kunststoffspritzguss: Der grundlegendste Leitfaden https://prototool.com/de/molds-for-plastic-injection/ https://prototool.com/de/molds-for-plastic-injection/#respond Mon, 21 Nov 2022 01:09:27 +0000 https://prototool.com/?p=7583 Molds For Plastic Injection: The Most Basic Guide
Prototool

For the manufacture of tiny, medium, and large-sized plastic parts, molds for plastic injection is the most often utilized manufacturing technique. An injection molding machine, unprocessed plastic, and a mold are all used in the procedure. After being heated to molten plastic in the machine, the plastic will be injected into the cavity, where it […]

The post Molds For Plastic Injection: The Most Basic Guide appeared first on Prototool written by Prototool.

]]>
Molds For Plastic Injection: The Most Basic Guide
Prototool

For the manufacture of tiny, medium, and large-sized plastic parts, molds for plastic injection is the most often utilized manufacturing technique. An Spritzgießmaschine, unprocessed plastic, and a mold are all used in the procedure. After being heated to molten plastic in the machine, the plastic will be injected into the Hohlraum, where it cools and hardens to form the finished product.

molds for plastic injection

Nearly all industries, including the Automobil, medical, small engine, plumbing, industrial, agricultural, and others, use plastic parts in their products. Manufacturers can make ultra-high-quality plastic components at the fastest possible rate and with the highest degree of accuracy by utilizing the most recent molds for plastic injection technology and manufacturing techniques.

What varieties of plastic injection molding are there?

Plastic injection molding is not a universal technique. To attain various end goals, we can apply several strategies.

  • Standard molding:

This straightforward method produces the item using just one color and material. This type of mold for plastic injection is frequently employed in producing toys, auto parts, and everything from drinks containers to caps.

A curved handle with a soft outer substance that makes it easy to grip is an example of an object that can be produced using this two-step method and requires two distinct types of plastic. A thermoplastic is then molded over the created substrate once the substrate portion is first made. Following this, each part is transferred individually to different molds for plastic injection. Mechanics or chemistry can be used to bind the two materials together.

Umspritzen
  • Insert Molding:

Wenn insert molding is utilized, a premade part serves as the substrate. A substance other than plastic might be used to create this substrate. Examples of insert molding include dials and knobs that have a plastic shell covering a metal interior. Plastic is first injected onto the substrate after it has been placed into the mold. As the overmolding substance, thermoplastic resin is typically used in this technique.

insert molding

This technique is carried out in a single molding press. It enables you to concurrently make a part or product utilizing a variety of colors and plastic kinds without needing to employ a multi-stage assembly procedure.

As an illustration, you should design a power tool housing with a handle that matches your brand. By use of the primary press barrel, a substrate is first introduced. The second injection unit then molds the second shot after the mold steel has been replaced. Both chemical and mechanical bonds can be present between the materials.

The components of an injection molding machine:

A material Trichter, a barrel, an injection ram or spinning screw, a heating element, a changeable pattern, ejectors, and a mold inside the mold cavity make up molds for plastic injection machines. Machines typically operate horizontally. A die’s opening and die’s closing, as well as the ejection of pieces, are functions of the Schließeinheit. There are two different kinds of clamping techniques: the toggle type that is displayed and the straight-hydraulic type that enables a mold to open and close directly using a hydraulic cylinder.

An electric motor powers a hydraulic rotating screw, which is situated at one end of the barrel. Plastic added from the hopper is twisted by the screw to melt it. The molds procedure begins once the necessary volume of molten plastic has been gathered. An attached mold is located on the barrel’s opposite side.

The molds in injection machines regulate the screw’s speed as molten plastic flows through the mold (or the injection speed). In addition, it regulates pressure as plastic is used to fill the voids. The speed control and pressure control are set where the screw position and injection pressure reach a certain value.

Chinese Injection Molding Machine

An injection mold’s composition:

The high-strength metal parts that are machined in half form the mold for plastic injection. Through the use of Läufer, gatesund eine Anguss, molten plastic pours into a mold and fills any openings. After the cooling process, the mold is opened, and the moldings are ejected using the ejector rod and plate of the injection molding machine.

When it comes to functioning efficiently throughout the molds for the plastic injection process, an injection mold’s composition is important. Even though molds typically have two halves—a cavity side and a core side—each half is frequently made up of numerous precise features.

What steps comprise the process of plastic injection molding

Usually lasting between six seconds and two minutes, the injection molding manufacturing cycle is extremely brief. The procedure is divided into the following steps:

Klemmen

The two parts of the mold must first be tightly closed by the clamping mechanism before the heated plastic material is injected into the mold. The mold’s two sides are pushed together by the clamping unit’s powerful force, which also maintains the mold shut and securely closed while the material is injected. The machine’s size and the size of its apertures will determine how long it takes to close and clamp the mold. Larger machines take longer.

Einspritzung

The injection unit feeds the molds for the plastic injection machine with raw plastic material, which is typically in the form of tiny pellets that are then augered or transported towards the mold. The plastic substance warms up as the screw drives the plastic pellets through hot sections of the machine barrel, owing to temperature and compression.

A precise fraction of the molten plastic that is transferred to the screw’s face before injection will turn into the finished product. Once the machine is fully clamped, the material is injected into the mold in a quantity known as the shot. Shot volume, injection pressure, and part shape are all factors that can be used to predict injection time.

Kühlung

Upon coming into contact with the internal surfaces of the molds, the molten plastic inside begins to cool. The freshly molded plastic object becomes more hard and solid in shape throughout the cooling process. It’s vital to remember that portion Schrumpfung could happen as the material cools.

It is only possible to open the mold after the required cooling period has passed. Every plastic-molded item has cooling requirements, which are determined by the thermodynamic characteristics of the plastic, the part’s Wandstärke, and the finished part’s dimensional specifications.

  • Rauswurf:

It is possible to use the ejection mechanism to remove the part from the mold after it has cooled inside it. The part is ejected from the mold with the vital force thanks to the mechanical components of molds for the plastic injection machines. When the part is expelled, the mold is prepared for the next part. Throughout this procedure, the machine has been preparing a fresh plastic shot.

What takes place during post-processing for plastic injection molding?

Frequently, post-processing applications are needed after the injection molding procedure. This could involve additional procedures used for decoration or practicality. There are six typical types of post-processing applications for injection molding.

  • Gate edging
  • Malerei
  • Utilizing a laser
  • Printing on pads
  • Fire staking
  • Sonic wave welding
process of molds for plastic injection

What benefits does plastic injection molding offer?

Molds for plastic injection are a fantastic option for producing a huge variety of parts and goods due to their aesthetic and functional adaptability. The following are important benefits:

Higher Standard:

Precision and consistency are produced in pieces produced via injection molding. In reality, when compared to other methods of producing plastics, injection-molded parts have very good dimensional consistency. Additionally, there are a lot of data-driven injection molding techniques and tools that support a part’s overall quality.

Compatible design:

Computer-aided design (CAD), computer-aided manufacturing (CAM), and SolidWorks are all easily integrated with injection molding. As a result, while using this procedure to create simple objects is a smart idea, it is also useful for creating intricate or very complex parts and when a component’s precise criteria must be satisfied.

Various color options:

To create almost any shade or visual impact, colorant producers have access to a wide variety of hues.

Adaptable product characteristics:

Plastics come in more than 15,000 different varieties on the market to produce the necessary functional outcomes. Additionally, fillers like glass fibers are added to boost strength, and UV protection can be added to objects that will be exposed to the sun to increase their durability.

Compliance:

Resins that abide by FDA, NSF, REACH, and RoHS regulations are readily available when needed.

Sustainability:

Because molds are so precise and effective, it generates very little waste, and any extra material can frequently be recycled.

Cost-effectiveness and speed:

It is particularly effective since injection molding is a fairly straightforward technique that is also highly automatable. This shortens the production process, which could increase profits while also saving money.

Lightweight:

Despite being much lighter than metal or other materials used for typical parts, plastic is a robust substance. Due to this, many manufacturers think that switching out metal or steel parts for plastic ones through metal-to-plastic conversion is a good idea.

PROTOTOOL is your finest option if you’re searching for a high-quality mold for a plastic injection supplier. They provide the greatest solutions while ensuring that all of your needs are addressed with pleasure.

The post Molds For Plastic Injection: The Most Basic Guide appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/molds-for-plastic-injection/feed/ 0