Comparison | Prototool Prototool Offizielle Website Tue, 09 Jan 2024 08:17:32 +0000 de-DE stündlich 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Comparison | Prototool 32 32 Pulverbeschichtung vs. Lackierung bei der Oberflächenbehandlung von Prototypen https://prototool.com/de/powder-coating-vs-painting-in-prototype/ Mon, 08 Jan 2024 03:42:51 +0000 https://prototool.com/?p=17124 Powder Coating vs Painting in Prototype Surface Treatment
Prototool

Entdecken Sie die wichtigsten Unterschiede zwischen der Pulverbeschichtung und der Lackierung im Prototyp, einschließlich der Anwendungsmethoden, der Kosteneffizienz usw.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>
Powder Coating vs Painting in Prototype Surface Treatment
Prototool

Spray coating encompasses spray painting, spray oiling, and spray zinc. In this context, spray painting and spray oiling are considered the same process and will be collectively referred to as spray painting. Powder coating, also known as plastic spraying, is a different process and will be referred to as powder coating in this article. Spray zinc, often used for large architectural steel structures or high-demand metal workpieces, will not be the focus of this discussion. Let’s talk about powder coating vs painting in prototype today.

Among all the surface treatment types mentioned, spray painting is arguably the simplest. It involves pouring paint into a specialized spray painting device and using a spray gun to coat the workpiece. The piece is then left to dry naturally or is dried using high heat. Thus, it’s a relatively straightforward physical process.

The equipment and techniques used in these processes vary, leading to differences in texture and cost.

Differences Between Spray Painting and Powder Coating

Let’s briefly outline their key differences:

Spray Painting vs. Powder Coating: Spray painting is a technique of dispersing liquid paint, commonly referred to as paint into fine dust particles which are blown on the surface of an object using compressed air. Powder coating, on the other hand uses compressed air to spray powder in a high-voltage electrostatic field. The powder particles are then drawn towards the surface of the object using an electric field.

The Correct Term for Powder Coating: Powder coating as a process is properly referred to as “electrostatic powder coating.” It’s not the sort of task that can be accomplished using just an ordinary spray paint gun. Equipment for powder coating comprises a powder supply barrel using compressed air, a High-voltage electrostatic generator and an electrostatic spray gun. Outdoor and indoor powders are the plastic powder used in this process. The main kind is Outdoor powder made ​​of epoxy resin, which in terms of composition differs fundamentally from the paint.

Powder Coating process for Prototype

Analysis of Characteristics For Comparing Powder Coating vs Painting

Powder Coating Process

1. No Solvents in Powder Coatings:

Powder coatings do not contain any solvents and are 100% solid. This aspect addresses pollution issues caused by solvents during manufacturing, transportation, storage, and application. It improves the working conditions for operators and benefits their health.

2. Simplified Coating Process:

The powder coating process involves just three steps: spraying the powder, curing, and cooling, allowing for a one-step film formation. This simplicity significantly streamlines the coating process, shortens the production cycle, and enables product output on the same day. In electrostatic powder coating, the integration of automatic coating machinery and a recycling system can lead to automated production, saving energy and resources and enhancing productivity.

3. High Utilization Rate of Powder Coatings:

Powder coatings can be directly applied to the surface of the object and cured by baking to form a coating. Unused powder can be collected and reused, with a utilization rate of over 95%.

4. Durable and High-Performance Powder Coatings:

Powder coatings can be made from resins that are insoluble at room temperature or high-molecular-weight resins that cannot be liquefied. This results in high-performance coatings with various functionalities. The absence of solvents in the preparation or film formation process prevents pinholes in the coating, making it denser.

5. One-Time Coating Possibility:

A single application of powder coating can achieve a film thickness of 50 to 300 μm without the dripping or sagging issues common with thick paint applications. It also avoids solvent pinholes and defects associated with thick film coatings, and offers high edge coverage. In contrast, paint typically requires multiple applications to achieve a similar thickness or quality.

6. Challenges in Color Changing:

Unlike paint, which can be mixed on-site, the color of powder coatings is predetermined at the factory. Changing the color requires altering the powder coating formula, making quick color changes challenging. Electrostatic spraying necessitates thorough cleaning of the spray gun, powder feeder, spray chamber, transport pipes, and recycling system during color changes, especially when switching between dark and light colors.

7. Difficulty in Achieving Thin Films:

Due to the principles of electrostatic spraying, the thickness of powder coatings is generally above 50 μm. Even with high-quality powder coatings and optimal conditions, achieving a film thickness below 40 μm is challenging.

8. Slightly Inferior Surface Smoothness:

Powder coatings, which rely on heat-induced melting and leveling on the object, have a higher melting viscosity. This can result in a slightly orange-peel texture, making the coating less smooth than paint.

9. Certain Limitations:

The limitations of the powder coating process are mainly in three areas: First, since the curing temperature of powder coatings is generally above 160°C, this restricts their use on heat-sensitive products like plastics. Second, as most powder coating processes use electrostatic spraying, the object must be conductive. Non-metallic objects require conductive treatment and must withstand temperatures above 160°C.

Powder Coating Prototype Case

Spray Painting Process

1. Wide Variety of Paints:

China categorizes paints into seventeen major types, with thousands of varieties available, and new types are continually emerging. Users can select the most suitable paint based on product performance, usage, and environmental factors to achieve optimal coating results.

2. Comprehensive Process Techniques:

Spray painting adapts well to various methods, including brush painting, dip coating, flow coating, roller coating, knife coating, air spray painting, high-pressure airless spray painting, electrophoretic painting, and electrostatic spray painting. Among these, brush painting, air spray painting, and electrophoretic painting are widely used.

3. Lower Initial Equipment Investment:

Spray painting equipment mainly includes spray guns, air compressors, oil-water separators, and necessary air hoses. Compared to the substantial investment required for powder coating equipment, spray painting involves less initial capital, lower production costs, and quicker capital recovery.

4. Simplified Pre-treatment Process:

In spray painting, thanks to the excellent rust-prevention properties of primers and their good adhesion to both substrates and topcoats, the corrosion resistance of the coating is significantly enhanced, ensuring the longevity of the coating. Only degreasing and derusting treatments are needed before applying the primer, thereby simplifying the pre-treatment process, saving production costs, and improving efficiency.

5. Longer Production Cycle and Higher Overall Cost:

Spray painting involves more steps than powder coating. During application, it requires the use of primers, putties, thinners, and topcoats, with drying time needed between each step. Some paints also require heat drying. Therefore, considering material consumption, energy use, and labor costs, the overall cost of spray painting is higher than powder coating, and the production cycle is longer.

6. Poor Environmental Performance:

Harmful to Operators’ Health: Paints contain organic solvents that can volatilize into the air during application and curing. Air spray painting produces a significant amount of overspray and paint mist, which is harmful to health, necessitating the use of protective masks by operators.

7. Higher Fire Hazard Compared to Powder Coating:

Spray painting poses a higher fire risk than powder coating for several reasons: First, the organic solvents in paint are highly volatile and can easily ignite or explode upon contact with open flames or sparks. Powder coatings do not contain organic solvents, thus presenting a lower risk. Second, the flash point, ignition point, and ignition energy of paint are lower than those of powder coatings, leading to faster combustion spread. Lastly, the ventilation equipment, working environment, and operational procedures in air spray painting are generally less advanced than in powder coating, increasing the risk of fire.

It’s important to note that while spray painting has a higher fire risk than powder coating, in the rare event of an explosion, the intensity and destructive power of a powder coating explosion can be much greater than that of liquid paints.

Painting Prototype Case

Powder Coating vs Painting Overall Comparison

Environmental Impact: Powder coating is often seen as being less detrimental to the environment than standard spray painting. It emits lesser amounts of volatile organic compounds (VOCs) that are harmful to human health and the environment.

Durability and Finish: Generally powder coating gives a thicker and more even finish than spray painting. It is more resistant to chipping, scratching and other wear and tear making it great for items requiring a hard finish.

Application Efficiency: Powder coating is more efficient in the application process. Extra powder can be salvaged and reused, thereby reducing wastage. However, spray painting tends to result in overspray and will require more accuracy for an even finish.

Curing Process: Powder coating curing process is faster compared to traditional spray painting. Heating allows for cure-coated items to be ready much faster.

Kostenüberlegungen: Although this initial setup cost for powder coating can be more due to the equipment needed it will actually work out cheaper in ring term because of its efficency, life span and lower waste.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>
Korrekte Bedienung von konventionellem Fräsen und Steigfräsen https://prototool.com/de/conventional-milling-and-climb-milling/ Tue, 17 Oct 2023 02:12:35 +0000 https://prototool.com/?p=14603 Correct Operation of Conventional Milling and Climb Milling
Prototool

Explore conventional milling vs. climb milling. Find their applications and benefits. Rely on our CNC milling expertise for optimal results.

The post Correct Operation of Conventional Milling and Climb Milling appeared first on Prototool written by Prototool.

]]>
Correct Operation of Conventional Milling and Climb Milling
Prototool

Milling plays a pivotal role in the manufacturing industry, shaping countless products and components we use daily. Especially when precision is paramount, understanding the nuances between different milling techniques becomes crucial. One such distinction lies between conventional milling (or up milling) and climb milling (or down milling).

Definitions of Conventional and Climb Milling

In the realm of milling operations, the rotation direction of the milling cutter typically remains constant. However, the direction of feed can vary. This has led to the emergence of two prevalent milling techniques: conventional milling (also known as up milling) and climb milling (often referred to as down milling).

Conventional Milling (Up Milling)

Conventional milling is when the milling cutter spins in the same direction as the workpiece moves. In simpler terms, the cutter rotates against the direction of the feed.

Climb Milling (Down Milling)

On the other hand, in climb milling, the milling cutter spins in the opposite direction to the way the workpiece is moving. This means the cutter rotates in the same direction as the feed.

Anmerkung: It’s essential to understand that the determination of whether an operation is conventional or climb milling is based on the feed direction of the workpiece, not the feed direction of the cutter.

Practical Identification Methods

When milling the outer contour of a workpiece (assuming the cutter rotates clockwise):

  • If the feed direction is clockwise along the workpiece’s outer contour, it’s conventional milling.
  • If the feed direction is counter-clockwise along the workpiece’s outer contour, it’s climb milling.

On the other hand, when milling the inner contour of a workpiece (again, assuming the cutter rotates clockwise):

  • If the feed direction is counter-clockwise along the workpiece’s inner contour, it’s conventional milling.
  • If the feed direction is clockwise along the workpiece’s inner contour, it’s climb milling.

Characteristics of Conventional and Climb Milling

Milling operations, whether conventional or climb, come with their unique set of advantages and challenges. Understanding these characteristics can help manufacturers make informed decisions about which method to employ for a specific task.

Features of Conventional Milling (Up Milling)

In conventional milling, the thickness of the chip decreases progressively from the start of the cut until it reaches zero by the end of the cut. This absence of friction prevents the cutting edge from scraping and rubbing against the surface of the part before the actual cut begins. Moreover, because the chips move from thick to thin during conventional milling, it’s less likely to form burrs when machining ductile materials.

As illustrated in the provided image:

  • The vertical force (FV) exerts downward pressure on the workpiece, aiding in its secure clamping.
  • The horizontal force (FH) moves in the same direction as the workpiece’s feed. This can be disadvantageous as it doesn’t help in eliminating the gap in the machine table’s lead screw. When the force exerted by the cutter teeth on the workpiece is significant, it can lead to chatter, compromising the smoothness of the cut.

Features of Climb Milling (Down Milling)

In climb milling, the chip thickness starts from zero and gradually increases as the cutter tooth rotates until the end of the cut. The cutter tooth doesn’t immediately engage with the workpiece; instead, it skids on the already machined surface. This skidding can harden the surface, deteriorating its quality and accelerating the wear of the cutter tooth.

As depicted in the provided image:

  • The vertical force (FV) has an upward-lifting effect on the workpiece. This upward force tends to pull the workpiece out of its clamp, which isn’t conducive to secure clamping.
  • Conversely, the horizontal force (FH) moves in the opposite direction of the workpiece’s feed. This is beneficial as it helps eliminate the gap in the machine table’s lead screw, ensuring a steady feed and minimal vibration.

Milling Techniques for End Face Milling

End face milling, a crucial aspect of the machining process, can be approached in various ways depending on the relative position of the milling cutter to the workpiece. Understanding these techniques and their implications can help in achieving optimal results.

Symmetrical Milling

When the workpiece is positioned centrally to the milling cutter, the process is termed as symmetrical milling. In this method, the chip thickness remains consistent during both the entry and exit of the cut, resulting in a substantial average cutting thickness.

Asymmetrical Conventional Milling (Up Milling)

In this technique, the milling cutter is offset to one side of the workpiece’s symmetrical plane. As the cutter exits the material, the chip thickness is at its minimum. This method is particularly suitable for materials like stainless steel, which have a high deformation coefficient and are prone to work hardening.

Asymmetrical Climb Milling (Down Milling)

Here, the milling cutter is also offset to one side of the workpiece’s symmetrical plane. However, as the cutter enters the material, the chip thickness is minimal. This results in a smaller initial impact, consistent cutting force, and a smoother milling process. This technique is especially effective when machining carbon steel and high-strength low-alloy steel.

The Golden Rule of Milling: From Thick to Thin

A paramount consideration during milling is the formation of chips. The position of the milling cutter plays a decisive role in chip formation. It’s essential to ensure that a thick chip forms as the cutter edge enters the material and a thin chip as it exits. This “thick to thin” principle guarantees a stable milling process, ensuring that the chip thickness is as minimal as possible upon the cutter’s exit. This approach not only enhances the quality of the finished product but also prolongs the life of the milling tools.

Tips for Choosing Between Conventional and Climb Milling

Selecting the right milling technique is crucial for achieving the desired results. The choice between conventional milling (up milling) and climb milling (down milling) depends on various factors, including the material being machined and the specific challenges faced during the machining process.

Based on Material Characteristics

  • Standard Machining Conditions: When the machine tool, fixture, and workpiece are allowed, conventional milling is often the preferred method. This is because it tends to enhance the lifespan of the milling cutter and improve the surface quality of the machined part.
  • Presence of Surface Imperfections: If the workpiece surface has imperfections such as scale (black skin), hardened layers, or significant unevenness, climb milling is recommended. This is because, in climb milling, the cutter teeth engage the already machined surface, reducing the risk of tool chipping.
  • Machining Difficult Materials (with a strong tendency to harden): For materials that are challenging to machine due to their hardening tendencies, conventional milling is advised. This method not only minimizes cutting deformation but also reduces cutting resistance.
  • Machining High-Temperature Alloys with Ceramic Cutters: When using ceramic cutting tools to machine high-temperature alloys, climb milling is suggested. Ceramic tools are sensitive to the impact generated when entering the workpiece, making climb milling a more suitable choice.

Based on Machining Challenges

  • Damage or Wear on the Back End of The Tool: If there’s noticeable wear on the trailing edge of the tool, it’s best to opt for conventional milling. This approach helps avoid issues like tool scraping and excessive wear caused by squeezing.
  • Vibration Due to Tool Overhang: In precision machining, if there’s a significant tool overhang leading to vibrations, climb milling is the way to go.
  • Vibration Due to Poor Spindle Rigidity: In situations where there’s a lack of spindle rigidity, especially during machining processes with high cutting resistance (like shoulder milling), trying climb milling can be beneficial.

Mastery in Milling: Prototool’s Commitment to Excellence

Conventional milling and climb milling are foundational techniques in the milling process. For a distinguished manufacturing service provider, mastering these methods is non-negotiable. At Prototool, we not only understand the intricacies of these techniques but excel in their application. Drawing from our vast experience and expertise, we ensure that every project we undertake is a testament to our commitment to precision and quality. When you choose Prototool, you’re choosing a partner who has made it their mission to master the very basics, ensuring that your designs are brought to life with unparalleled accuracy and finesse.

Drehen MethodeFräsmethode
Innendrehen & Außendrehen
Kegeldrehen
Schulterfräsen
Seitenfräsen
Planfräsen
Rampenfräsen
Eintauchfräsen
Peripherie-Fräsen
Spiralförmiges Fräsen
Rillenfräsen
Vertikalfräsen und Horizontalfräsen
Konventionelles Fräsen & Steigfräsen

The post Correct Operation of Conventional Milling and Climb Milling appeared first on Prototool written by Prototool.

]]>
Vergleich von Elektrodenbearbeitungsprozessen für verschiedene Materialien: Wie funktioniert es? https://prototool.com/de/electrode-machining/ https://prototool.com/de/electrode-machining/#respond Fri, 07 Jul 2023 01:40:23 +0000 https://prototool.com/?p=11535 Comparing Electrode Machining Process on Different Materials: How It Works?
Prototool

Electrode machining is among the newer metal processing techniques, compared to rotating cutters, shearing, and forging. This machining process passes rapidly pulsed high-voltage electrical discharges (sparks) across the gap between the electrode and the grounded workpiece. As a result, it helps remove the material from the workpiece by erosion. This way, even the most complex […]

The post Comparing Electrode Machining Process on Different Materials: How It Works? appeared first on Prototool written by Prototool.

]]>
Comparing Electrode Machining Process on Different Materials: How It Works?
Prototool

Electrode machining is among the newer metal processing techniques, compared to rotating cutters, shearing, and forging. This machining process passes rapidly pulsed high-voltage electrical discharges (sparks) across the gap between the electrode and the grounded workpiece.

As a result, it helps remove the material from the workpiece by erosion. This way, even the most complex and intractable material can be cut and machined with very little bulk heating and virtually no application of macro forces, provided that the material is electrically conductive. This results in very low distortion and no addition of meaningful residual stresses to the workpiece.

But wait! Why should you opt for electrode machining for your production needs? Let’s go ahead and explore all that and much more about it.

EDM Machining

What is Electrode Machining?

Electrode machining, also known as electrode manufacturing, is used to create or shape electrodes for various applications, particularly in EDM.

Simply put, electrode machining is a versatile process that can manufacture intricate contours and shapes in various materials. The procedure calls for applying electric discharges to carve out the desired form and remove unwanted material.

How Does the Electrode Machining Process Work?

Electrode machining involves several steps to create or shape electrodes for use in Electrical Discharge Machining. Here is a detailed explanation of how it typically works:

● Design and Preparation:

The first step is the design and preparation phase. The electrode’s design is created using computer-aided (CAD) software, specifying the desired shape, dimensions, and features. Once the design is finalized, the appropriate electrode material is selected based on workpiece material, machining parameters, and desired Oberflächengüte.

● Electrode Material Selection:

The choice of electrode material depends on various factors. Commonly used materials include copper, graphite, and tungsten copper alloys, which offer good electrical conductivity and heat resistance. The selected material is prepared, cut to the desired size and shape, and ready for electrode machining.

● Machining Techniques:

Electrode machining involves various techniques to shape the electrode material into the desired form. The specific technique depends on factors such as the complexity of the electrode design, the material being used, and the precision required.

Common machining techniques include fräsen, Drehen, grinding, or electrical discharge grinding. These techniques remove excess material and create the electrode’s desired shape and features.

Lesen Sie auch: CNC-Bearbeitung von Teilen für die Luft- und Raumfahrt: die beliebteste Bearbeitung in der Produktion

● Surface Finishing:

After the initial machining process, the electrode may undergo surface finishing to achieve the desired surface quality and dimensional accuracy.

Finishing techniques such as polishing or grinding may remove any roughness, burrs, or imperfections on the electrode’s surface. This helps ensure the electrode meets the required specifications and provides optimal performance.

● Inspection and Verification:

Once the electrode is machined and finished, it undergoes inspection and verification to ensure it meets the required specifications. This involves dimensional measurements, visual inspections, and functional tests to confirm accuracy, surface finish, and suitability for the intended electrode machining process.

Moreover, the electrode’s dimensions and features are checked against the CAD design to ensure it matches the intended requirements.

● EDM Process:

The machined and verified electrode is then used in the EDM machine. In the EDM process, the electrode, connected to the machine’s power supply, is positioned close to the workpiece.

Rapid electrical discharges occur as the electrical current passes between the electrode and the workpiece, creating sparks or plasma that erode the workpiece material. The electrode’s shape and dimensions determine the shape and features produced on the workpiece.

● Maintenance and Optimization:

It’s important to remember that electrodes may wear out or degrade over time due to the electrode machining process. Therefore, regular maintenance, such as electrode cleaning, reconditioning, or replacement, is necessary to ensure optimal performance and accuracy.

Optimization techniques, such as electrode wear compensation and toolpath adjustment, may also enhance the electrode’s longevity and machining efficiency.

EDM Machining in operation

Electrode Machining on Different Materials: The Comparison

The following is an in-depth comparison of the machining done by electrodes on various materials:

Material:Usage FrequencyPropertiesDesign Solutions/Machining ProcessPreferred Industry
Steel:It is utilized extensively in the steel machining industry.Because of its high conductivity, steel is an excellent choice for the electrode machining processes.Steel, even steel that has been hardened, can be formed into intricate shapes and features thanks to a process that allows for this.Because it is possible to achieve a high level of precision and surface finish with electrode machining, this technology is ideally suited for producing tools and dies, molds, and precision components for the automotive and aerospace industries.
Aluminum:It is also used for machining aluminum products, even though working with aluminum presents a different set of challenges than working with steel.Aluminum is a highly conductive material, which makes it possible to be carried out effectively. Aluminum’s lower melting point makes it prone to thermal damage during the process.To prevent excessive melting and achieve the desired results, we need to exercise proper control over the process parameters, such as current, pulse duration, and electrode material.It is frequently used in aerospace to create aluminum components with intricate shapes and cooling holes.
Copper:This technique can also be used to machine copper, which can be machined using this process.Much like aluminum, copper has a low melting point, making it susceptible to damage when subjected to high temperatures.During the machining process, extra precautions must be taken to avoid melting the material to an excessive degree and to keep the dimensions accurate.The electrical and electronics industries frequently use electrode machining to produce copper electrodes, electrical contacts, and precision components.
Titanium:Titanium, unlike other materials, is more preferably machined using electrode machining. It is mainly because this method relies on something other than mechanical force or cutting tools to complete the process.Titanium’s high strength, low thermal conductivity, and high melting point make it a complex material to machine. This material also has a high melting point.Titanium can be efficiently stripped of material using electrode machining, even in a hardened state. This can be done without sacrificing dimensional accuracy or surface finish.The aerospace and medical industries extensively use the process to produce titanium components, such as turbine blades, implants, and surgical instruments.
Ceramics:Ceramics, which are notoriously difficult to machine using traditional methods, are one of the materials that can be machined, which is another application of this technique.Because ceramics are electrically insulating materials, specialized EDM processes called “Electrical Discharge Grinding” (EDG) or “Electrical Discharge Diamond Grinding” (EDDG) are required to grind ceramics.In these processes, conductive graphite or metal tools are used as electrodes to make the material removal accomplished through electric discharges easier.Ceramics such as alumina, silicon carbide, and zirconia can be machined using electrode machining, which allows for the production of intricate shapes and features for use in applications within the electronics, biomedical, and semiconductor industries.

Schlussfolgerung:

To summarize, electrode machining is a versatile process used on various materials, such as ceramics, steel, aluminum, copper, and titanium. Even though every material has challenges, this technique can provide precise contouring and generate intricate features for various industrial applications.

However, even with advanced machining solutions, technicians need to make sure that electrode machining is conducted carefully. Specifically, it’s crucial to pay attention to the parameters of the process and the materials used for the electrodes to achieve the best possible results and prevent unfavorable thermal effects.

FAQ:

Which Type of Electrode Machining Technology Is Ideal for Creating Parts with Complex Cavities?

Typically, sinker discharge machining is the best type of electrode machining technology for making products with cavities that are hard to reach. It lets designers make more complicated holes, often needed for plastic and die-cast parts.

However, sinker discharge isn’t much less helpful in molding because it can’t make every hole shape. The “line of the draw” that stops EDM from making undercuts also applies to plastic molded and die-cast parts, which go into the tool hole as a liquid but come out as a solid.

electrodes used for machining

What is the Purpose of Using Electrode Machining?

Electrode machining is an alternative to traditional hard-material machining processes, particularly refractory metals and difficult-to-cut forms. In terms of diameter and roundness, wire electrode machining and hole-drilling electrode machining can attain otherwise unthinkable tolerances in precision cutting.

Moreover, it can maintain excellent precision and very low Ra values (high-quality surface finish). This trait leads to less post-processing, sometimes lowering costs for components that would otherwise be extremely difficult to manufacture.

Vorgeschlagene: CNC Machining Tolerances: Everything You Need to Know In 2022

--

Still, have questions? Ask our professional team of machining technicians at Prototool.com.

The post Comparing Electrode Machining Process on Different Materials: How It Works? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/electrode-machining/feed/ 0
Warum ist die CNC-Entformung besser als die manuelle Entformung? https://prototool.com/de/cnc-demolding/ https://prototool.com/de/cnc-demolding/#respond Wed, 28 Jun 2023 01:37:35 +0000 https://prototool.com/?p=11439 How Is CNC Demolding Better Than Manual Demolding?
Prototool

CNC demolding is the automated approach to getting parts out of an injection mold. This makes it easier for technicians to conduct the machining process effectively. While many technicians don’t have a detailed understanding of CNC demolding and how it works, a lack of understanding can lead to issues in the production process. As professionals […]

The post How Is CNC Demolding Better Than Manual Demolding? appeared first on Prototool written by Prototool.

]]>
How Is CNC Demolding Better Than Manual Demolding?
Prototool

CNC demolding is the automated approach to getting parts out of an Spritzgussform. This makes it easier for technicians to conduct the machining process effectively.

While many technicians don’t have a detailed understanding of CNC demolding and how it works, a lack of understanding can lead to issues in the production process. As professionals in CNC machining, we here at Prototool will help you understand demolding in detail.

So keep reading to learn all about this demolding approach.

Lesen Sie auch: Vorteile und Anwendungen der CNC-Bearbeitung in der medizinischen Industrie

CNC demolding application in injection molding

A Brief Overview of CNC Demolding:

CNC demolding, also known as CNC unmolding or CNC release, is a process used in manufacturing to remove a part or component from a mold or casting. This process is typically automated and performed by a CNC machine, which utilizes computer-controlled movements to precisely and efficiently release the part from the mold.

This demolding process involves several key steps. First, the mold containing the part is securely positioned within the CNC machine. The machine is then programmed with the necessary instructions for the demolding process. These instructions include the specific movements, angles, and forces required to safely and effectively remove the part from the mold.

Once the program is set, the CNC machine begins the demolding process. It uses its mechanical arms, clamps, or other specialized tools to grip and hold the mold or part carefully. The machine then applies controlled forces and movements to release the part from the mold. This can involve tilting, rotating, or sliding motions, depending on the shape and complexity of the part.

During the demolding process, it is essential to ensure the part is released smoothly without any damage or distortion. CNC machines are designed to provide precise and controlled movements, minimizing the risk of part deformation or breakage. The machine’s computerized control system allows for precise positioning and adjustment, ensuring accurate demolding results.

https://youtube.com/shorts/Vz290dRQ0v4?feature=share

Advantages of CNC Demolding

CNC demolding offers several advantages in the manufacturing industry. It enables faster and more efficient production by automating the demolding process, reducing the need for manual labor, and increasing overall productivity. The precision and repeatability of CNC machines ensure consistent demolding results, leading to higher-quality parts and reduced scrap rates.

Additionally, demolding allows for the demolding of complex and intricate parts that may be difficult or impossible to remove manually. The computer-controlled movements and specialized tools of CNC machines can handle intricate shapes, undercuts, and delicate features, ensuring successful demolding without damage to the part or mold.

Lesen Sie auch: 5-Achsen-CNC-Bearbeitung: Die umfassendste Einführung

The Process of CNC Demolding:

CNC demolding comprises a series of steps and procedures, all carried out by the CNC machine. The following is an in-depth explanation of how demolding normally functions:

Setting up the mold or casting that holds the component that has to be demolded is the first step in the preparation process for the CNC machine. During the process of demolding, the stability of the mold is ensured by the machine’s careful positioning of the mold within the machine.

● Programming:

The CNC machine has been given very particular programming instructions to perform the demolding operation. These instructions provide the motions, angles, and forces that must be used to remove the component from the mold without damaging it. The programming is accomplished through the use of specialized software or code languages that are unique to CNC machines.

● Gripping and Fixturing:

The CNC machine employs mechanical arms, clamps, or specialized fixtures to securely grip and hold the mold or item while it is machined. The demolding process immobilizes the component to avoid damage from movement or displacement.

● Computer-Directed Movements:

The computerized control system of the CNC machine takes over and carries out the instructions that were programmed into it. It is responsible for controlling the motions of the machine, including the placement, rotation, and tilting of the mold or component. Carefully planned movements ensure a smooth demolding process with no component distortion or damage.

● Forces That Are Under Control:

The CNC machine uses forces under control to remove the item from the mold. Depending on the particular design of the CNC machine, these forces may be applied in the form of hydraulic or pneumatic pressure, mechanical actuation, or some other method.

Forces are controlled to ensure smooth demolding without excessive stress or strain on the part.

● High Levels of Precision and Repeatability:

CNC machines can perform motions with a high level of precision and repeatability. Furthermore, they can position and alter the mold or part with such precision that the outcomes of the demolding process are reliable and constant. This precision helps to preserve the part’s integrity and guarantees that it satisfies the requirements outlined in the specification document.

● Checks for Quality:

It is possible to conduct quality checks at various points in the demolding process to ensure that the part retains its structural integrity. This can include visual inspections, measurements, or other quality assurance measures to determine that the demolding was adequate and that the part satisfies the requirements.

Get the parts out the injection molding machine by the CNC demolding method

CNC Demolding vs Manual Demolding: The Difference

Both computer numerical control (CNC) demolding and manual demolding are two distinct methods for extracting parts from molds. Let’s get into more depth about these different approaches:

Efficiency and Speed:

CNC demolding is more efficient and faster than traditional methods because the machines follow precisely the instructions that have been put into them. They can quickly remove parts from molds, reducing the time required for demolding. On the other hand, manual demolding involves human labor, which might result in a slower process overall, mainly when dealing with complicated molds or parts.

Precision and Consistency:

Higher levels of both precision and uniformity can be achieved through the use of CNC demolding. How exactly? During the demolding process, CNC machines’ movements controlled by a computer guarantee perfect positioning and consistent force distribution.

Because of this, the quality of the parts is maintained. When manual demolding is performed, the output quality depends on the operators’ knowledge and expertise, which can vary and lead to inconsistencies.

Complexity and Geometric Flexibility:

CNC demolding is excellent at working with intricate geometries and complex part designs. CNC machines can handle difficult designs with ease and excellent accuracy. Some examples of such designs include undercuts, complex curves, and internal elements.

In contrast, the manual demolding process may struggle with elaborate patterns, requiring additional effort and carrying the danger of harming either the item or the mold.

Labor Intensity and Operator Skills:

The labor intensity required for demolding is reduced since the demolding process is automated once the machine has been programmed and set up. The operator skills required for CNC demolding are also reduced.

Having said that, it takes only a small amount of intervention from the operator. The manual demolding process requires more expertise and labor because it depends on the operators’ talents and physical effort.

Sending parts to the assembly line by automatic robot arm

Safety and Ergonomics:

CNC demolding improves both aspects of workplace safety and ergonomics. It reduces the risk of physical strain and injuries resulting from repetitive hand motions involved in demolding.

Using CNC machines reduces the likelihood of an accident or injury due to manual handling because these machines are built with safety and dependability in mind.

Scalability and Production Volume:

CNC demolding is appropriate for high-volume production as it is very scalable. Once the CNC machine has been set up, it is capable of demolding huge amounts of parts consistently and efficiently.

In comparison, manual demolding may be better suited for low-volume or prototype production, where flexibility and adaptability are critical.

Kosten:


CNC demolding demands higher upfront investment due to costly CNC machine acquisition and maintenance. The manual demolding process has lower prices for the equipment required, but it may have higher costs for the labor required, particularly for production on a big scale.

Verwandte Seiten: Angebot für CNC-Bearbeitung: Was sind die einflussreichen Faktoren

Schlussfolgerung:

In the end, CNC demolding offers several advantages over manual demolding methods. It provides faster and more efficient production, increased precision and repeatability, and the ability to handle complex part geometries. By automating the demolding process, CNC machines reduce the reliance on manual labor and improve overall productivity while maintaining high-quality standards.

Even so, CNC demolding is a precise and controlled process that utilizes computerized movements and controlled forces to safely and efficiently separate a part from its mold or casting. Its accuracy, repeatability, and ability to handle complex part shapes make it an indispensable technique in modern manufacturing processes.

The post How Is CNC Demolding Better Than Manual Demolding? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/cnc-demolding/feed/ 0
CNC-Laserschneidmaschine 101: Ein detaillierter Kaufratgeber https://prototool.com/de/cnc-laser-cutting-machine/ https://prototool.com/de/cnc-laser-cutting-machine/#respond Fri, 12 May 2023 01:55:04 +0000 https://prototool.com/?p=10823 CNC Laser Cutting Machine 101: A Detailed Buying Guide
Prototool

The initial experience of diving into laser cutting can leave you feeling a tad overwhelmed. What are your options? What kind of material should you use? For which materials should you use this CNC Laser Cutting Machine setting? This comprehensive guide will delve into the essential aspects of utilizing and acquiring the finest CNC laser-cutting […]

The post CNC Laser Cutting Machine 101: A Detailed Buying Guide appeared first on Prototool written by Prototool.

]]>
CNC Laser Cutting Machine 101: A Detailed Buying Guide
Prototool

Die ersten Erfahrungen mit dem Laserschneiden können Sie ein wenig überfordern. Was sind Ihre Möglichkeiten? Welche Art von Material sollten Sie verwenden? Für welche Materialien sollten Sie dieses CNC-Laserschneidmaschine Einstellung?

Dieser umfassende Leitfaden befasst sich mit den wesentlichen Aspekten des Einsatzes und der Anschaffung der besten CNC-Laserschneidmaschine.

 Lesen Sie also weiter, um eine Fülle von Informationen über dieses bemerkenswerte Instrument zu erhalten.

Anzeige einer CNC-Laserschneidmaschine
Anzeige einer CNC-Laserschneidmaschine

Was ist ein Laserschneider?

Das Laserschneiden ist in erster Linie ein Wärmebehandlungsverfahren. Bei diesem Verfahren wird das Material durch einen fokussierten Laserstrahl geschmolzen. Koaxiale Gasdüsen werden eingesetzt, um das geschmolzene Material auszutreiben und Schlitze zu erzeugen.

Der Laserstrahl oder das Werkstück wird zum kontinuierlichen Schneiden CNC-gesteuert bewegt. Obwohl er am häufigsten in der industriellen Fertigung eingesetzt wird, wird er auch von Schulen, kleinen Unternehmen und Amateuren verwendet.

Wie funktioniert ein Laserschneider?

Obwohl "Laser" eine Abkürzung für einen sehr ernsten und intensiven Begriff ist, hat er eine einfache Bedeutung: enges und kohärentes Licht.

Der Laser muss also intensives und gebündeltes Licht erzeugen - und wenn genügend Licht auf einen einzigen Bereich konzentriert wird, kann er Dinge wie ein heißes, scharfes Messer schneiden und verbrennen.

In der ersten Phase geht es darum, Licht zu erzeugen. Allerdings eignet sich nicht jedes Licht für einen Laserstrahl; wir benötigen Lichtstrahlen, die zusammenarbeiten. Wir verwenden monochromatisches Licht, das heißt, alle Lichtstrahlen haben die gleiche Wellenlänge.

Zum Beispiel kann der Laserstrahl nur blaues Licht ausstrahlen, statt des weißen Lichts Ihrer Lampe, das zahlreiche Farbnuancen enthält und ein breites Spektrum hat.

Es gibt verschiedene Methoden, um diese Art von Licht für Laserstrahlen zu erzeugen. CO2-Laser erzeugen Licht durch Anregung eines Gasgemischs, während Diodenlaser Elektrizität zur Anregung von Halbleitern und Faserlaser Licht zur Anregung von Glasfasern verwenden.

CNC-Laserschneidmaschine in Betrieb

Lesen Sie auch: Gasunterstütztes Spritzgießen: Innovative Lösung für die Kunststoffherstellung

Jede dieser Methoden liefert ausreichend Licht für Laserstrahlen. Das Licht wird dann von der Quelle zu den Linsen geleitet. Durch die Linsen wird das Licht gerichteter und kohärenter.

Das war's schon! Ihr Laserstrahl strahlt jetzt sehr kohärentes Licht aus.

Der Laser graviert das Material nur bei niedrigen Energien. Dabei wird die Materialoberfläche so weit erhitzt, dass einige Teile verdampfen und Markierungen hinterlassen. Der Laser ist so heiß und leistungsfähig, dass er das Material durchschneidet.

Welche Materialien schneidet eine CNC-Laserschneidmaschine?

Industrielle Fertigung, kleine Unternehmen, kleine Läden, Heimunternehmen, Heimwerkerläden und Schulen können alle von Lasergravier- und -schneidemaschinen profitieren.

Faserlasergraviermaschinen werden häufig zum Gravieren und Schneiden von Metallmaterialien wie Edelstahl, Kohlenstoffstahl, Kupfer, Legierungen, Aluminium, Silber, Gold und Eisen eingesetzt.

Auch nichtmetallische Materialien wie Holz, Stoff, Acryl, Leder, Schaumstoff, Kunststoff, Stein, Papier, MDF und PVC werden in der Regel mit CO2-Lasergravier- und -schneidemaschinen graviert und geschnitten.

CNC-Laserschneiden von Materialien
CNC-Laserschneiden von Materialien

Was Sie bei der Wahl einer CNC-Laserschneidmaschine beachten sollten:

Berücksichtigen Sie diese wesentlichen Faktoren bei der Auswahl eines CNC-Laserschneidmaschine für Ihr Unternehmen:

Die Macht - Was wollen Sie schneiden oder gravieren?

Ein Laser mit höherer Leistung ermöglicht ein schnelleres Einstellen und Schneiden, so dass oft nur ein Durchgang oder weniger erforderlich ist. Ein leistungsstarker Laser spart also Zeit und schneidet schneller.

Kaufen Sie ein Lasergraviergerät jedoch nicht auf der Grundlage der reinen Leistungsdaten des Lasers. Die Sache ist komplizierter, und einige Unternehmen machen ein Geheimnis um die wahre Leistung ihrer Laser.

Ein 10-W-Laser hingegen kann recht dickes Holz und geätzte Metalle schneiden. Ein 40-W-CO2-Laser kann das Gleiche, aber viel besser (wesentlich mehr Materialien gravieren). Nur starke Faserlaserschneider und industrielle Geräte können Metalle schneiden.

Geschwindigkeit - Wie schnell soll der Cutter schneiden?

Graviergeschwindigkeiten sind von entscheidender Bedeutung, vor allem wenn Sie lasergeschnittene oder -gravierte Waren verkaufen und jedes Projekt so schnell wie möglich abschließen möchten. Verwechseln Sie aber Geschwindigkeit nicht mit der Stärke des Lasers. Geschwindigkeit ist einfach die Geschwindigkeit, mit der sich Ihr Laser über jede Achse bewegen kann - sie ist keine Garantie dafür, dass er direkt durch das Material schneiden kann.

Es ist zu bedenken, dass Lasergravierer unterschiedliche Idealgeschwindigkeiten haben, und Testschnitte können verwendet werden, um Ihre Lasergraviermaschine zu bewerten.

Schneiden Sie dickeres Material langsamer (es können mehrere Durchgänge erforderlich sein), aber schneller, wenn Sie gravieren möchten und keinen zu dunklen Kontrast wünschen.

CNC-Laserschneiden mit hoher Geschwindigkeit
CNC-Laserschneiden mit hoher Geschwindigkeit

Größe - Passt es in Ihren Arbeitsbereich?

Die besten Lasergravierer können größere Bilder und andere Designs gravieren; Sie möchten sich nicht auf kleine Aufgaben beschränken, daher ist ein großformatiges CNC-Laserschneidmaschine & Gravierer die ideale Option sein.

Professionelle Lasergravierer verfügen über einen großen Arbeitsbereich; bedenken Sie jedoch, dass ein Gehäuse den Arbeitsbereich des Lasers etwas einschränkt.

Lasergraviermaschinen unter $1000 verfügen in der Regel über ein Freiluftsystem (anstelle eines Gehäuses) und bieten gute Größen für das jeweilige Budget. Die billigsten Laser haben z. B. nur 150 x 150 mm Arbeitsfläche, während teure Laser oft mehr als 400 x 400 mm haben. Das reicht für die meisten Hobby-Projekte und große Gravuren aus.

Leistungsqualität - Erfüllt sie Ihre Qualitätserwartungen?

Gravierpräzision ist für eine hochwertige Gravur unerlässlich. Durch die Kombination von Schnitttiefe, Brennpunkt und Komponenten wie Schrittmotoren wird Gravurpräzision erzeugt.

Es ist jedoch zu bedenken, dass selbst preiswerte Lasergravierer unglaublich genau sind. Tatsächlich kann kein Laserschneider gut funktionieren, wenn Sie die Brennweite und die Einstellungen Ihres Laserstrahls nicht optimieren. Darüber hinaus beeinflussen die Geschwindigkeit, die prozentuale Leistung (im Vergleich zu den geschnittenen Materialien), die Möglichkeit der Luftunterstützung und viele andere Aspekte die endgültige Qualität Ihres Artikels.

Preis - Passt es in Ihr Budget?

Heutzutage können Sie kompetente Lasergravurgeräte für weniger als $300 erwerben. Das heißt aber nicht, dass Sie das auch tun sollten, denn diese Geräte werden häufig aus minderwertigen Materialien hergestellt und sind nicht so genau und zuverlässig, wie Sie es sich wünschen.

Es ist wichtig, daran zu denken, dass es einen Unterschied zwischen einem ausgezeichneten, preisgünstigen Lasergravurgerät und einem Lasergravierer gibt, der für Ihr Budget gut geeignet ist. Und es spricht nichts dagegen, weniger teure Lasergravurgeräte zu verwenden, wenn Sie Geld sparen möchten, aber nicht die ganze zusätzliche Leistung benötigen.

Berücksichtigen Sie jedoch Ihre derzeitigen und künftigen Bedürfnisse, bevor Sie eine CNC-Laserschneidmaschine.

Gas Assistance - Welche ist die richtige für Sie?

Sauerstoff, Stickstoff und Werkstattluft sind die typischsten Hilfsgase. Einige Laserschneid-Spezialisten verwenden auch Argon und Sauerstoff-Stickstoff-Kombinationen.

Der Hauptzweck des Hilfsgases besteht darin, das vom Laser aufgeschmolzene Material abzutransportieren, damit es beim Voranschreiten des Lasers nicht zu verhärten beginnt.

Darüber hinaus können Stickstoff und Argon die Oxidation hemmen, während Sauerstoff eine exotherme Reaktion auslöst, die die Temperatur des Schneidprozesses erhöht.

Software-Kompatibilität - funktioniert das auch bei Ihnen?

Eine weitere Überlegung ist, dass Sie zwar die Kontrolle über die Software haben, mit der Sie entwerfen, aber keine vollständige Kontrolle über die Lasersoftware haben. Sie ist vom Laser abhängig.

Einige Laserhersteller stellen ihre eigene Lasersteuerungssoftware zur Verfügung, andere wiederum integrieren bereits vorhandene Software von Drittanbietern. Das Laserprogramm übernimmt den Großteil der Interaktion mit dem Gerät. Mit dem Laserprogramm können Sie Fotos und möglicherweise Vektorzeichnungen laden (sowie g-Codes, abhängig von Ihrem Laser).

Ändern Sie dann die Einstellungen für Laserleistung und -geschwindigkeit in der Software, bevor Sie die Starttaste drücken. Wenn Ihr Laser rotationsfähig ist, enthält Ihre Lasersoftware eine Einstellung für die "Zylindergravur". Damit können Sie den Laser und die Rotation so einstellen, dass Sie kreisförmige Objekte gravieren können.

Lesen Sie auch: Was ist CNC-Bearbeitung: Ein professioneller Leitfaden

CNC-Laserschneidmaschine vs. CNC-Lasergravur-Maschine

Diese Maschinen funktionieren ähnlich, d. h. sie verwenden benutzerdefinierte Modelle zur Herstellung von Teilen. Wie unterscheiden Sie also zwischen Ihrem Bedarf an einem Laserschneider und einem Lasergravierer? In der folgenden Tabelle wird der Unterschied erläutert.

CNC-Lasergraviermaschine
CNC-Lasergraviermaschine
CNC-LaserschneiderCNC-Lasergravierer
Laserschneider verwenden intensive Lichtstrahlen, um Material zu verdampfen und das fertige Produkt zurückzulassen. Bei der subtraktiven Fertigung verwenden diese Cutter Vektordateien, um Ihr gewünschtes Produkt präzise zu schneiden, wobei Späne abgeschnitten und diese Bereiche sauber voneinander getrennt werden. CO2-Laser werden häufig in Laserschneidern verwendet, und selbst Modelle der unteren Preisklasse können schnell und präzise durch Acryl, Kunststoff und Holz schneiden.  Lasergravurgeräte erzeugen ein Bild, ein Logo oder ein Design, indem sie es in die Oberfläche des Materials eingravieren, anstatt es vollständig zu durchschneiden. Die Lasergravur wird am häufigsten verwendet, um ein Firmenlogo oder eine Botschaft auf einem Schild anzubringen, sie kann aber auch verwendet werden, um einfarbige Grafiken dauerhaft auf ein Stück Holz zu drucken. Zu diesem Zweck werden Bilder im SVG-, jpg-, png- oder AI-Format verwendet. Bei dem Verfahren handelt es sich häufig um eine Rastergravur, bei der sich der Laser horizontal bewegt und Zeile für Zeile unterschiedliche Materialstärken wegschneidet, um ein kontrastreiches und lesbares Bild zu erzeugen. Laser mit kleinen Punktgrößen und kurzen Brennweiten werden von Graveuren verwendet, um präzise Designs zu erstellen.    

Schlussfolgerung:

Verstehen Sie Ihren Nutzungsbedarf in einem CNC-Laserschneidmaschine hilft Ihnen bei der Auswahl der idealen Maschine für Ihren kurz- und langfristigen Einsatz.

Mit Hilfe dieses umfassenden Leitfadens können Sie die Funktionsweise einer CNC-Laserschneidmaschine und die Bandbreite der Materialien, die sie schneiden kann, besser verstehen und erhalten wertvolle Hinweise zur Auswahl der perfekten Maschine für Ihre Projekte.

The post CNC Laser Cutting Machine 101: A Detailed Buying Guide appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/cnc-laser-cutting-machine/feed/ 0
CNC-Fräse vs. Router - Vergleich von Geschwindigkeit, Funktion, Genauigkeit, Kosten und mehr! https://prototool.com/de/cnc-mill-vs-router/ https://prototool.com/de/cnc-mill-vs-router/#respond Thu, 27 Apr 2023 14:26:56 +0000 https://prototool.com/?p=10768 CNC Mill vs. Router – Comparing Speed, Function, Accuracy, Cost, and More!
Prototool

According to Fortune Business Insight, the global CNC machine market was estimated to be worth USD 83.99 billion. This market is further expected to grow to USD 140.78 billion by 2029. That said, CNC machines are common automated machines manufacturers use to process materials and create diverse products. But how do you know which CNC […]

The post CNC Mill vs. Router – Comparing Speed, Function, Accuracy, Cost, and More! appeared first on Prototool written by Prototool.

]]>
CNC Mill vs. Router – Comparing Speed, Function, Accuracy, Cost, and More!
Prototool

According to Fortune Business Insight, the global CNC machine market was estimated to be worth USD 83.99 billion. This market is further expected to grow to USD 140.78 billion by 2029. That said, CNC machines are common automated machines manufacturers use to process materials and create diverse products. But how do you know which CNC machine suits your product’s production demands? Specifically, common machines like CNC routers and CNC mills help make manufacturing tasks easier and more efficient. For choosing one of these machines, it’s important to understand their differences and cost estimates. In this guide, we will discuss a detailed comparison between CNC mill vs. router and how these machines differ in price.

CNC Mill vs. Router

So keep reading to learn all about these CNC machines.

Understanding CNC Mill and Router:

Mills and routers are CNC (Computer Numerical Control) devices used to cut and shape materials such as wood, metal, and plastic with high precision.

So, what on earth is the difference between a CNC mill and a router? While they may appear the same, there are a few crucial variances. CNC mills are designed to move in three or more axes and are often used for cutting tougher materials such as metal. They can perform various activities, such as drilling, tapping, and boring. On the other hand, Routers are designed to cut softer materials such as wood and plastic and typically move in three axes. They are also more suitable for engraving and sculpting.

CNC mills and routers use a spinning cutting tool to remove material from the workpiece, but the tools differ. Milling machines use a high-speed rotating cutting tool, whereas routers use a spinning spindle with a cutting tool attached.

Lesen Sie auch: Keramik-Herstellung: Was es ist, der Prozess und die wichtigsten Überlegungen

Apart from these differences, various advantages, working properties, and cost differences add to the comparison of CNC mill vs. router. In this detailed article, let’s go ahead and explore that below in detail.

Comparison Table: CNC Mill vs. Router

If you’re unsure which CNC machine you should choose, below is a detailed comparison table of CNC Mill vs. Router.

A CNC router
FeaturesCNC MillCNC Router
Design and StructureMilling machines controlled by a computer have a sturdy and solid frame constructed out of cast iron or steel. When cutting tougher materials like metal, it is necessary to have a design that helps absorb vibration and ensures stability during operation. This design helps achieve both of those goals. The cutting tool is fixed on a spindle that allows it to travel in all directions, including forward and backward, side to side, and up and down. This motion is managed by precision linear guides and ball screws, which make it possible to place things in a manner that is both exact and consistent.   The workpiece is supported by a table capable of movement along three or more axes, enabling great flexibility and variety. In addition, the table is often outfitted with T-slots or other mounting elements that make it simple to secure the workpiece in place and adjust its orientation. CNC milling machines can be fitted with a broad variety of cutting tools, such as end mills, drills, and taps. As a result, these machines are extremely versatile and can be adapted to perform a wide range of machining processes.The frames of CNC routers are often composed of aluminum or composite materials, contributing to their reduced weight. This design provides faster acceleration and slowdown, which is useful when cutting softer materials like plastic and wood. This design also allows for faster acceleration and deceleration. The cutting tool is fixed on a spindle that allows it to travel in all directions, including forward and backward, side to side, and up and down. Moreover, precision linear guides and ball screws control this movement.   The piece of work is supported by a mobile table along three axes, enabling significant flexibility and adaptability. In contrast to the tables on milling machines, the one on a router is not normally intended for heavy-duty cutting and may not be as sturdy. CNC routers often come outfitted with various cutting tools, such as router bits, drills, and saw blades. As a result, these machines are extremely versatile and can be adapted to perform a wide range of cutting operations.
Functionality and MovementCNC milling machines are specifically intended to cut and shape tougher materials like metal, and they accomplish this by removing material from the workpiece using revolving cutting blades. They can move along three or more axes, enabling great precision and diversity in their operations. A computer, which receives instructions from a program written in CAD/CAM software, controls the movement of the cutting tool. CAD/CAM software was used to write the program.CNC routers are designed to cut through softer materials such as wood and plastic and typically operate along three axes. They use a spinning spindle with a cutting tool attached to remove material from the workpiece. A CAD/CAM program provides the instructions a computer uses to control the movement of the spindle, which is also controlled by the computer.
Accuracy and PrecisionThe structure of CNC milling machines allows for extremely accurate and exact movement of the cutting tool, which is important for creating complicated shapes and features with tight tolerances.   Additionally, CNC milling machines typically feature improved tool holders and high-speed spindles, which enable the machine to maintain accurate tool positioning and stability despite the high cutting speeds at which it operates. This makes cutting more quickly and efficiently possible while preserving high accuracy and precision throughout the process.When cutting tougher materials, the lighter frame, less robust linear guides, and ball screws used in constructing CNC routers result in poorer accuracy and precision than milling machines.   However, contemporary CNC routers typically come outfitted with cutting-edge technologies such as high-precision servo motors and closed-loop feedback systems, which can correct any positioning imperfections and keep the tool in an accurate position. Because of this, cutting can be done in a manner that is extremely accurate and precise, particularly when utilizing specialist tools such as diamond-tipped router bits.
Speed and PowerCNC milling machines are primarily built to cut tough materials such as metal, so they are frequently equipped with powerful motors and high-speed spindles. This makes cutting possible at a higher speed and more efficient, particularly when utilizing specialized tools such as carbide end mills.   In addition, the construction of their heavy, robust frames includes high-precision linear guides and ball screws, which enable faster acceleration and deceleration. This can assist in minimizing the amount of time needed for machining, which in turn can help to enhance productivity.Since CNC routers are often intended for cutting softer materials such as wood and plastic, these machines may not require the same degree of power as milling machines. It’s primarily because of the nature of the materials that they are designed to cut. Nonetheless, newer routers typically come equipped with powerful motors and high-speed spindles, allowing quick and precise cutting despite the machine’s age.   Moreover, the design of these machines features a light frame, which allows for faster acceleration and deceleration and less rigid linear guides and ball screws. This design helps reduce the time needed for machining and boosts productivity, particularly when cutting softer materials.
AnmeldungCNC milling machines help manufacture parts and products that help in the production industries like aerospace and defense, automotive, and medical. Some common products such machines help manufacture include engine parts, turbine blades, missile components, cylinder heads, engine blocks, joint replacements, surgical tools, and more.These machines help manufacture different parts and products that we can find in the production industries, like plastics, woodworking, and signage. Some common parts and products that this machinery helps manufacture include wooden furniture, musical instruments, signage logos, carved decorative signage, display cases, toys, etc.

Cost Comparison:      

Today, some brands and companies offer different price ranges for CNC mill vs. router models. Hence, the cost of a computer numerically controlled (CNC) router or mill differs based on the brand, quality, and size of the machine you buy. However, in most cases, you can anticipate that CNC routers will be less expensive than CNC mills of an equivalent grade.

Why is that? Because you can purchase CNC routers for as little as two hundred dollars or as much as one hundred thousand dollars for industry-level capability. In contrast, CNC mills normally cost more than $1,000, even for the brands that are considered to be the most economical, and they can cost as much as $150,000.

CNC MILLS

Schlussfolgerung:

The advantages, applications, use cases, and production capabilities of the CNC mill vs. router are endless. However, understanding the basic differences between the two machines can help make a smarter production decision for your business or products.

Still have queries? Contact our experts at Prototool.com.

The post CNC Mill vs. Router – Comparing Speed, Function, Accuracy, Cost, and More! appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/cnc-mill-vs-router/feed/ 0
Thermoformen vs. Spritzgießen - was ist besser? https://prototool.com/de/thermoforming-vs-injection-molding/ https://prototool.com/de/thermoforming-vs-injection-molding/#respond Wed, 22 Mar 2023 02:59:26 +0000 https://prototool.com/?p=10431 Thermoforming vs. Injection Molding – Which is Better?
Prototool

Plastics, used in all industries, provide adaptability and strength in various applications, from vehicle body parts to human body parts. Each application needs a distinct manufacturing technique capable of molding the part according to specifications. Both thermoforming and injection molding, two of the most prevalent manufacturing procedures for creating plastic parts, have distinct advantages depending […]

The post Thermoforming vs. Injection Molding – Which is Better? appeared first on Prototool written by Prototool.

]]>
Thermoforming vs. Injection Molding – Which is Better?
Prototool

Kunststoffe, die in allen Industriezweigen verwendet werden, bieten Anpassungsfähigkeit und Festigkeit für verschiedene Anwendungen, von Karosserieteilen für Fahrzeuge bis hin zu menschlichen Körperteilen. Für jede Anwendung ist ein anderes Herstellungsverfahren erforderlich, mit dem das Teil entsprechend den Spezifikationen geformt werden kann. Sowohl Thermoformung und Spritzgießen, zwei der gängigsten Herstellungsverfahren für Kunststoffteile, haben je nach Anwendung unterschiedliche Vorteile.

Wenn Sie auf der Suche nach einem Fertigungsverfahren sind, das Ihrem Budget und Ihren Produktionsanforderungen entspricht, ist es wichtig, den Unterschied, die Vorteile und den Prozess des Thermoformens zu kennen und zu verstehen, wie er sich von typisches Spritzgießen.

Um Ihnen zu helfen, werden wir alles über dieses Herstellungsverfahren und seine Unterschiede zum Standard-Spritzgießverfahren erläutern. Sollen wir uns also mit den Einzelheiten befassen?

Tiefziehen

Was ist Thermoformung?

Im Allgemeinen werden beim Thermoformen Gegenstände durch das Pressen heißer thermoplastischer Platten in eine einseitige Form hergestellt. Tiefgezogene Gegenstände können durch Druck auf die Platte oder durch Verdrängen der gesamten Luft aus der Form hergestellt werden. Diese Technik wird als Vakuumformung bezeichnet.

Nachdem ein Teil geformt wurde, wird es nach den Vorgaben des Kunden zugeschnitten und fertiggestellt. Dieses Herstellungsverfahren eignet sich hervorragend für einfache Geometrien und Teile mit großen Toleranzen, wie z. B. Verpackungseinsätze, aber nicht für kleine, komplizierte Teile oder Großserien.

Geschichte des Thermoformens

Das Konzept des Thermoformens geht auf das Jahr 1855 zurück, als die Zellulose erfunden wurde. Einer derjenigen, denen die Entwicklung des Spritzgießens zugeschrieben wird, John HyattEr experimentierte mit der Verwendung von Zellulose als Rohstoff, um einen zäheren Kunststoff herzustellen. Bei seinen Experimenten kombinierte er Nitrocellulose, Kampfer und Alkohol und begann, das Material zu Platten und Stäben zu verarbeiten.

Außerdem gab er die Endfertigung von Produkten wie Spielzeug, Flaschen und anderen Gegenständen häufig an andere Unternehmen ab. Heute wird dieses Verfahren zur Herstellung einer breiten Palette von Produkten eingesetzt, von Spielzeug bis hin zu ganzen Badewannen und Armaturenbrettern für Fahrzeuge. Im Gegensatz zum Spritzgießen sind die Werkzeugkosten beim Thermoformen geringer, und große Teile können bei geringen Stückzahlen schnell hergestellt werden.

Vorteile des Thermoformens

Hohe Anpassungsfähigkeit und einfache Bedienung

Da beim Thermoformen eine einfache einseitige Form aus hochverformbaren Materialien verwendet wird, können Thermoformdesigns schnell und kostengünstig aktualisiert werden. Beim Spritzgießen hingegen sind zwei Formen mit schwereren Materialien erforderlich, die zeitaufwändiger und teurer sind als das Werkzeug.

Produkttextur, Farb- und Designvarianten

Dieses Herstellungsverfahren hat zahlreiche Vorteile für das Produktdesign und die Markenbildung. In thermogeformte Polymere können leuchtende Farben eingebracht werden, was eine lebendige, lang anhaltende Farbgebung im gesamten Material ermöglicht. Außerdem lassen sich thermogeformte Materialien lackieren, SiebdruckDruck, Schablonen und Beschichtungen, die unverwechselbare Designs, Texturen und Oberflächen ermöglichen, um das Aussehen und die Lebensdauer des Produkts zu verbessern.

Reduzierte Werkzeugkosten

Die Werkzeuge für das Thermoformen sind weniger teuer als die für das Spritzgießen. Die Formen werden häufig aus kostengünstigen Aluminium. Im Gegensatz dazu werden Spritzgussformen oft aus dickerem Aluminium, Stahl oder anderen schweren Legierungen hergestellt, um höheren Drücken standzuhalten und eine kontinuierliche Wiederverwendung über längere Fertigungsläufe hinweg zu ermöglichen.

Außerdem wird bei diesem Herstellungsverfahren ein einseitiges Werkzeug anstelle einer doppelseitigen Spritzgussform verwendet. Dies führt dazu, dass fast die Hälfte des Materials, das für Formenbauwodurch die anfänglichen Kosten des Thermoformens gesenkt werden. Allerdings sind die Formen weniger robust und können nicht für die Herstellung von Großserien oder Wiederholungen verwendet werden.

Die Größe des Bauteils hat einen erheblichen Einfluss auf die Kosteneffizienz des Thermoformens im Vergleich zum Spritzgießen. Je größer das Bauteil ist, desto größer ist der Unterschied bei den Werkzeugkosten. Mit zunehmender Größe des Bauteils wird dieses Herstellungsverfahren immer kostengünstiger.

Tiefziehmaschine

Schnelle Fertigung und Prototyping

Betreffend Produktentwicklung und Prototypentests ist das Thermoformen aufgrund der Schnelligkeit, mit der die Formen hergestellt werden können, viel schneller als das Spritzgießen. Die Herstellung von Spritzgusswerkzeugen dauert länger, da die Formen doppelseitig sind und aus härteren Materialien wie Stahl bestehen. Im Vergleich dazu sind Thermoformwerkzeuge einfacher zu entwerfen, zu bauen und zu ändern, wodurch sie sich hervorragend für Entwicklung und Tests eignen.

Was ist Spritzgießen?

Das Kunststoff-Spritzgießen oder Spritzgießen erfordert ein hohes Maß an fortschrittlichem Design und Technik, um komplexe Werkzeuge oder Formen herzustellen. Geteilte Formen aus rostfreiem Stahl oder Aluminium werden mit geschmolzener Flüssigkeit eingespritzt Polymere bei hohen Temperaturen und unter großem Druck. Die Formen werden dann abgekühlt, um ganze Kunststoffteile herauszulösen.

Die Vorteile:

Das Kunststoffspritzgießen hat verschiedene spezifische Vorteile, darunter:

Detailliertes Tooling für komplizierte Teile

Ein wesentlicher Vorteil des Spritzgießens besteht darin, dass es die Herstellung von hochkomplexen Bauteilen mit einem außergewöhnlichen Detailgrad ermöglicht. Da das Material selbst in die kleinste Form fest gepresst wird präzise HohlräumeDer enorme Druck, der beim Spritzgussverfahren eingesetzt wird, ermöglicht die Herstellung komplizierter Bauteile und ungewöhnlicher Geometrien. Mit Mehrkavitätenwerkzeugen kann das Spritzgießverfahren an die individuellen Bedürfnisse angepasst werden.

Hohe Präzision und Effizienz

Beim Spritzgießen werden langlebige und wiederverwendbare Formen für zahlreiche Auflagen verwendet. Die Kunden können sich darauf verlassen, dass die Form über viele Jahre hinweg präzise und gleichbleibende Ergebnisse für große Produktionsläufe liefert.

Dieser Ansatz ist besonders vorteilhaft für extrem kleine, komplexe und detaillierte Bauteile, deren Herstellung durch Thermoformen oder Schneiden zeitaufwändig oder schwierig ist, fräsenund andere Herstellungsverfahren.

Kosteneinsparungen beim Kunststoff-Spritzgießen

Obwohl das Spritzgießen teurer ist als das Thermoformen, können die Formkonstruktion und der Herstellungsprozess auf verschiedene Weise geändert werden, um die Gesamtproduktionskosten zu minimieren. Die Vereinfachung des Designs kann helfen Kosten senken die mit der Herstellung komplizierter Formen verbunden sind.

Darüber hinaus können Verfahren zur Materialreduzierung, wie z. B. Hinterschneiden und Entkernen, oder der einfache Austausch von Formen für ein ähnliches Produkt eine Möglichkeit sein, die Anforderungen eines neuen Projekts im Rahmen des Budgets zu erfüllen.

Effektiver Materialeinsatz

Das Spritzgießen ist eine sehr effiziente Technik mit extrem niedrigen Ausschussraten. Das Material jeder Komponente wird genau abgemessen, um sicherzustellen, dass die Form gefüllt ist, was zu wenig Überlauf oder Abfall führt. Nach der Entnahme aus der Form kann ein spritzgegossenes Produkt maßstabsgetreu mit wenig zusätzlichen Werkzeugen hergestellt werden.

Kunststoff-Spritzguss eignet sich perfekt für großvolumige Aufträge und Massenproduktion bei Projekten, die Tausende oder sogar Millionen von ein und demselben Teil erfordern.

Der Vergleich: Thermoformen vs. Spritzgießen

Volumenvergleich

Beim Spritzgießen sind wesentlich höhere Produktionsmengen möglich als beim Thermoformen. Das liegt daran, dass Spritzgussformen viele Kavitäten haben können. Manche Formen können über 100 Kavitäten haben. Allerdings wird bei diesem Verfahren in jedem Zyklus nur ein einziger Artikel hergestellt. Daher ist das Spritzgießen für große oder regelmäßige Produktionsaufträge weitaus besser geeignet.

Vergleich der Geschwindigkeit

Sowohl das Spritzgießen als auch das Thermoformen eignen sich hervorragend für die schnelle Herstellung von Teilen. Der Hauptunterschied besteht darin, dass beim Spritzgießen die Formen manchmal zahlreiche Kavitäten haben können, die durch denselben Vorrat an geschmolzenem Material gespeist werden, was zu einem wesentlich höheren Ausstoß führt. Da die Werkzeuge für dieses Verfahren leicht angepasst werden können, wird die Entwicklung des endgültigen Produktdesigns und der Formen beschleunigt.

Vergleich der Materialien

Beim Spritzgießen und Thermoformen können dieselben Kunststoffmaterialien verwendet werden, z. B. Polyethylen, Polycarbonat und PVC. Da beim Spritzgießen Kunststoffgranulat verwendet wird, während bei diesem Verfahren Kunststoffplatten zum Einsatz kommen, sind die Materialien beim Thermoformen flexibler und verformbarer.

Vergleich der Leitkosten

Die Werkzeugkosten für dieses Verfahren können viel niedriger sein als beim Spritzgießen. Da die Drücke bei diesem Herstellungsverfahren niedriger sind als beim Spritzgießen, bestehen die meisten Werkzeuge bei diesem Verfahren aus Aluminium.

Im Vergleich dazu erfordert das Spritzgießen teure Werkzeugstähle wie P20 oder H13. Aufgrund der Komplexität der geformten Teile kann die Herstellung von Spritzgusswerkzeugen sehr lange dauern und wesentlich arbeitsintensiver sein als die von Thermoformwerkzeugen.

Spritzgießmaschine

Welche Methode ist die beste?

Beide Techniken können eingesetzt werden, um Kunststoffteile für bestimmte Branchen und Anwendungen. Viele Branchen entscheiden sich jedoch für eine bestimmte Strategie, die auf den besonderen Merkmalen des jeweiligen Projekts beruht. Um herauszufinden, welches Verfahren für Ihre Kunststoffformungsaufgabe geeignet ist, müssen Sie die besonderen Eigenschaften und Anforderungen Ihres Projekts sorgfältig bewerten.

Das Spritzgießen ist die beste Option für Projekte, die größere Produktionsmengen, besonders komplizierte oder präzise Designs, kurze Vorlaufzeiten oder eine automatisierte Programmierung zur Senkung der Herstellungskosten erfordern. Alle diese Anforderungen können durch das Spritzgussverfahren erfüllt werden, das große Mengen hochpräziser Teile schnell und kostengünstig herstellen kann.

Stattdessen eignet sich das Thermoformen für Projekte, die kleinere Fertigungsmengen, niedrigere Werkzeugkosten oder Teile mit Farbe und Struktur erfordern. Dieses fortschrittliche Verfahren bietet kurze Vorlaufzeiten und vielfältige ästhetische Möglichkeiten für größere Teile mit vereinfachten Designs.

Ob es sich um Kunststoffgranulat für das Spritzgießen oder um Kunststoffplatten für das Thermoformen handelt, beide Verfahren gewährleisten hohe Zuverlässigkeit und Qualität. Die einzigartigen Anforderungen der Anwendung bestimmen die beste Alternative für eine einzelne Arbeit.

Für weitere Details und Fragen stehen Ihnen unsere Fachleute bei Prototool gerne zur Verfügung.

The post Thermoforming vs. Injection Molding – Which is Better? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/thermoforming-vs-injection-molding/feed/ 0
3D Printing vs. Injection Molding, Which is better? https://prototool.com/de/3d-printing-vs-injection-molding/ https://prototool.com/de/3d-printing-vs-injection-molding/#respond Wed, 01 Feb 2023 01:00:38 +0000 https://prototool.com/?p=9118 3D Printing vs. Injection Molding, Which is better?
Prototool

You’re probably already considering potential production methods for your project. So, which production method is best? 3D printing vs. injection molding, and why? With this detailed guide, we will help you choose between injection molding and 3D printing to give life to your project by comparing and contrasting the two processes and highlighting their respective […]

The post 3D Printing vs. Injection Molding, Which is better? appeared first on Prototool written by Prototool.

]]>
3D Printing vs. Injection Molding, Which is better?
Prototool

You’re probably already considering potential production methods for your project. So, which production method is best? 3D printing vs. injection molding, and why?

3D Printing vs. Injection Molding, comparison

With this detailed guide, we will help you choose between Spritzgießen und 3D-Druck to give life to your project by comparing and contrasting the two processes and highlighting their respective strengths and weaknesses.

Making the Right Manufacturing Choice:

Among 3d printing and injection molding, both are excellent manufacturing procedures but are very distinct and can aid in completing diverse projects. This is entirely dependent on your requirements. Even if injection molding appears to be more professional, things are changing, and 3D printing is becoming a viable alternative, allowing for the creation of extremely exact parts.

These two strategies can help you with your rapid prototyping and production processes. They both have advantages, but which one will benefit your manufacturing process? To do so, you must first understand what these processes are.

Definition:

Spritzgießen:

Injection molding, a common industrial method used for decades, involves injecting molten material into a mold cavity to create a product. In this manufacturing process, people inject the molten material into the mold, solidifying as it cools and shaping the goods.

3D printing:

On the other hand, additive manufacturing, which is what 3D printing is, involves building up an object layer by layer. With this method, a 3D file is required to start the manufacturing process; a mold is unnecessary. These days, you can get your hands on a wide variety of 3D printing technology and materials.

Die Vorteile:

Injection Molding Advantages

When it comes to high-volume manufacturing, injection molding has many advantages. The process is streamlined due to its precision and repeatability. Injection molding allows you to make things with a wide variety of qualities since you may use a wide variety of materials, from plastic to metals.

Injection molding is particularly useful for manufacturing on a large scale. This method is ideal for making a product with complicated contours and ornamentation. You can tailor a part’s strength, flexibility, or other physical attributes to its intended application by selecting the appropriate material from among the many available options.

Spritzgießprozess

3D Printing Advantages

When comparing additive manufacturing to more conventional methods like injection molding, its many advantages become clear. In the first place, it works better with iterative designs, so if your project is still a work in progress, this method is for you.

For a long time, schneller Prototypenbau was seen as the ideal use for 3D printing. But that’s no longer the case, and it hasn’t been for some time because technology has improved and become more trustworthy. Despite this, prototyping is one of its strong points because it can do it rapidly and with less waste than other techniques.

Before printing again, you can test your idea with a simple printout and make any necessary adjustments in the 3D modeling software. Then you may print it out and double-check your work before submitting it for publication. As you refine your product’s design, this adaptability will save you both time and money.

With 3D printing, almost no materials go to waste. All you need to use is the number of materials necessary for the task. This is a significant plus compared to conventional manufacturing techniques like computer numerical control (CNC) machining and injection molding.

If you can print your design on demand, you can avoid having any extra materials on hand, which can add to the cost. Printing finished goods on demand eliminates the need for warehousing or supply chain management since it eliminates these issues.

3d printing process

The Difference:

Regarding whether the manufacturing process is superior, injection molding and three-dimensional printing each have compelling arguments in their favor. Nevertheless, it all depends on the requirements that you have in mind. Both methods of 3d printing vs. injection molding come with unique advantages and favorable characteristics. It includes:

Cost Difference:

Injection molding methods often need expensive machinery, with some machines reaching prices in the hundreds of thousands of dollars. On the other hand, investing in one of superior quality can provide you with years or even decades of service.

Those who are self-employed or developing their goods may find that purchasing one is not the most productive use of their financial resources. It is not something that you would want to buy for yourself. Nevertheless, there is a solution that is available that is more economical, and that is to hire service providers who specialize in injection molding.

The fact that you require molds specifically made for your product is another factor contributing to the high cost. This could add several thousand dollars or tens of thousands of dollars to the total cost.

Printing three-dimensional objects with a 3D printer is much more affordable than injection molding. Firstly, the printer is far more affordable. You have a wide variety of possibilities to pick from, so regardless of whether you work in production or as a hobbyist, you should have no trouble locating the most suitable product to meet your requirements and complete your projects. The cost of a 3D printer is often in the thousands of dollars, but there are no additional upfront fees because there is no need to construct a bespoke mold.

Similarly, several businesses now provide 3D printing services in addition to injection molding. This method is even more economical, as the only costs incurred are those associated with the usage of the machine and the ingredients. On the other hand, the new printers that are being produced right now make it possible for even the smallest industrial companies to get their own devices.

Timing Difference:

When it comes to the duration it takes to complete one product cycle of 3d printing and injection molding, injection molding is the procedure that takes the least amount of time. However, this isn’t all to the process because developing, manufacturing, and perfecting molds can take significant time.

A bespoke mold from steel or aluminum can take weeks to months. If you rely on a service provider, they may require you to wait for the allocated machine time. Because of these several considerations, the turnaround time will be significantly greater than it would normally be. However, once everything is organized, performing your role should not take too much time.

The process of 3D printing does not require any kind of lead time. You are prepared to move forward once the design has been completed using the software you have. Printing your component will take some time; in most cases, it will take a few hours.

Volume Difference:

The manufacturing volume is the primary area where injection molding and 3D printing diverge significantly. Injection molding is still the method of choice for high-volume production, even though three-dimensional printing saves a significant amount of money on the equipment and the materials used.

Injection molding is the technique you should use to produce batches of tens of thousands of pieces or more at a time or higher. At these high production rates, your financial investment in producing the ideal mold and purchasing a machine ought to pay for itself and then some.

On the other hand, 3D printing is an excellent option for low to medium-volume requirements. The most compelling examples in this category are prototyping and production on demand. This is the most effective approach when looking for a method of prototyping that is easy on the wallet.

You may also reduce your costs by reducing your storage amount because you can print just when needed. The 3D printing technology has also advanced to the point where it can generate your models reasonably, making it possible to manufacture runs to number in the thousands.

How to Use Them? 3D Printing vs. Injection Molding:

Spritzgießen:

You cannot use this technology without the usage of specific equipment. To employ injection molding, specific specialist machines are required. A material hopper, an injection ram, and a heating unit are all part of these injection molding machines.

Making molds for your injection molding method is an expensive operation that limits your prototyping options: Molds can be fairly expensive to recreate each time you need to make numerous iterations. Because these molds are often composed of steel, making adjustments is difficult and cannot be suited to your prototype development.

However, it is a viable option if you intend to create huge quantities. Remember that this process still has high injection molding tooling costs and a lengthy necessary turnaround time.

3D printing:

In terms of application, 3D printing differs from injection molding. There are numerous applications for additive manufacturing. If you require a 3D printing filament, you can purchase a 3D printer, such as an FDM (Fused Deposition Modeling). Your firm can purchase larger and more professional 3D printers, such as SLS (Selective Laser Sintering) 3D printers. However, purchasing your industrial 3D printer may be an expensive investment for your company, and it may not be worth it.

Alternatively, you may use a 3D printing service provider like Prototool. 3D printing technologies used by these service providers will assist you in creating all of your best ideas, from metal to plastic and resin. When hiring professional companies to offer you the service, you can choose from several technologies, such as Multi Jet Fusion, CLIP (DLS), DMLS, and 3D Printing.

Schlussfolgerung:

Ultimately, your requirements will fully determine the process/technology you choose for 3d printing vs. injection molding. Both have their own set of advantages, features, and outcomes. However, you may mix these two methods to get the most out of what they’re best at – it all depends on your production demands!

The post 3D Printing vs. Injection Molding, Which is better? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/3d-printing-vs-injection-molding/feed/ 0
Wanddicke von Kunststoffprodukten: Die meist empfohlene Referenz https://prototool.com/de/plastic-products/ https://prototool.com/de/plastic-products/#respond Wed, 14 Dec 2022 01:22:16 +0000 https://prototool.com/?p=8044 Plastic Products Wall Thickness: The Most Recommended Reference
Prototool

The wall thickness of injection molded plastic products significantly impacts their quality. If the wall thickness is too thin, it will be challenging to meet the requirements for strength and rigidity and fill the cavity for large and complex products. Too thick will not only waste raw material but also quickly generate bubbles inside the […]

The post Plastic Products Wall Thickness: The Most Recommended Reference appeared first on Prototool written by Prototool.

]]>
Plastic Products Wall Thickness: The Most Recommended Reference
Prototool

The wall thickness of injection molded plastic products significantly impacts their quality. If the wall thickness is too thin, it will be challenging to meet the requirements for strength and rigidity and fill the cavity for large and complex products. Too thick will not only waste raw material but also quickly generate bubbles inside the plastic products, resulting in Mängel such as depressions in the product’s appearance. At the same time, it will extend the cooling time. As a result, from an economic standpoint, it is critical to thin a plastic product.

plastic products measuring

When constructing a plastic injection mold, examine if the plastic product’s thickness fits the molding process’s requirements. If the product is too thin, the flow resistance during injection is high, injection molding is complex, and the cavity cannot always be filled. And if the product is too thick, it wastes raw materials, lengthens the molding cycle, and quickly generates defects such as bubbles, dents, and warpage.

Let’s go over it in greater depth.

Wall Thicknesses Commonly Used in Plastic Products:

It is recommended that everyday plastic items have a wall thickness of 1-6mm, with a maximum of 8mm. The most typical wall thickness is 1.8-3mm, which varies according to the kind and size of the plastic element. In order to get to know wall thickness easily, the specifications of commonly used wall thicknesses under various plastic injection molding settings are shown in the table below.

Table: Recommended and minimum wall thicknesses for popular thermoplastic parts (mm)

Plastic MaterialMin. ThicknessRecommended Thickness of Small-sized Plastic PartsRecommended Thickness of Mid-sized Plastic PartsRecommended Thickness of Large-sized Plastic Parts
PA0.450.751.602.40~3.20
PE0.601.251.602.40~3.20
PS0.751.251.603.20~5.40
PMMA0.801.502.204.00~6.50
POM0.801.401.603.20~5.40
PP0.851.451.752.40~3.20
PC0.951.802.303.00~4.50
PSF0.951.802.303,00~4.50
UPVC1.151.601.803.20~5.80
relatively thinwall plastic products

Benefits of Ideal Wall Thickness in Plastic Products:

Walls thicker to provide additional strength are contrasted with thinner walls to provide certain other benefits. Maintaining a thinner and lighter part can obtain additional benefits when production runs longer. As a result, maintaining the optimal thickness is critical, especially when undertaking plastic injection molding projects with a high production volume. If you keep the wall as thin as possible, you will benefit from the following benefits:

• Greater resistance to warping during the cooling process

• Reduced overall weight makes handling, managing, packaging, and shipping easier.

• Less time spent cooling, allowing for faster and more efficient production

• Lower costs due to less material consumption and faster production

The wall thickness of a part is not constrained in any way. Still, the ultimate goal should be to create a wall as thin as possible while also considering structural requirements, overall dimensions, and geometry of a part. This would be accomplished while preserving the part’s integrity. Another essential factor to consider is the flow characteristics and qualities of the resin materials.

relatively thickwall plastic products

What Affects the Plastic Products Wall Thickness Design?

The requirements of an application determine the fundamental structure of a plastic product, which the manufacturer then determines. The choice of raw material influences the overall thickness of the product. As a result, when designing thick-walled plastic products under typical conditions, two elements, namely the conditions of application and the conditions of plastic production, should be considered. Structure, weight, strength, and insulating qualities are application circumstances; plastic manufacturing conditions include material fluidity, cooling time, ejection force, assembly strength, dimensional correctness, and other factors. For more information, please see the three points below:

· Structure Characteristics:

The plastic product’s basic structure primarily refers to its shape and size, determined by the criteria imposed on the product by its intended application. When a metal part is replaced with a plastic part or when a new plastic part is designed, you should change the structure and wall thickness of the metal part to conform to the plastic product’s wall thickness uniformity principle. This is because the shrinkage characteristics of plastic during injection molding differ from those of metal. The thick-walled component is recommended to be hollowed out and adjusted so that the wall thickness is consistent throughout.

After melting during the plastic injection molding process, plastics have a certain fluidity. This fluidity, however, varies greatly depending on the different types and grades of plastic. The following factors influence plastic fluidity: typically, the melt flow index (MFI) and the Archimedean spiral flow test are used to assess the fluidity of plastics. A higher melt flow index, in general, indicates greater fluidity. However, this is only sometimes the case.

As a result, the wall thickness of various materials-based products should be designed to be as fluidity-friendly as possible. It ensures adequate cavity filling, molten plastic’s flow speed is uniform in all directions, and the flow direction has the least resistance. Thinner walls can be designed for plastics with high fluidity, such as nylon, polyethylene, and polypropylene. The wall thickness can be increased for polymers with low fluidity, such as PC and PSF. This results in increased structural integrity.

· Factors Contributing to Products Strength:

The physical and mechanical properties of the raw material, when combined with specific structural requirements, determine the tensile strength of a plastic product. Compared to metal, plastic is mechanically weaker, more brittle, less impact resistant, and lighter in weight; therefore, you should especially consider the design of plastic products’ wall thickness to meet the requirements for strength. Although a product’s application may only require a small amount of strength at times, it must withstand the impact and vibration of the ejection mechanism when released from the Formhohlraum. As a result, it is necessary to ensure that the product has a certain amount of resistance to ejection force.

Impact of Non-Uniform Wall Thickness:

· Rate of Cooling:

Different injection-molding wall thicknesses can also affect cooling speeds. Because thicker portions take longer to harden, the entire item must remain in the tool until it has cooled sufficiently to be ejected. Although this isn’t a quality concern, it does lengthen the cycle time – it would be more efficient if the whole part could cool in the same amount of time.

· Gating Challenges:

When gating an injection-molded part, starting with the thickest region and working your way down is critical. This is required to correctly pack the portion out after filling it. The molten material flow line must remain open during the cooling process so that the plastic can continue to flow into the part details. Flow irregularities may result from gating into a thin wall or flowing through a thin section to get material to a thicker area. The thinner portion may freeze and solidify, preventing further material from reaching the thick piece of the part during the packing phase. Because of the under-packed circumstances in the thick section, this can induce increased shrinkage, resulting in the sink and/or warp in part.

a plastic injection molding machine

· Appearance:

One of the most noticeable effects of altering wall thickness is how it alters the appearance of the injection-molded object. Variable wall thickness might provide undesired sinks and visual difficulties such as flow lines. Maintaining cavity contact for cooling and picking up the gloss or texture of the cavity surface might also be challenging.

· Shear Stress:

Non-uniform wall thickness can also affect shear stress in flowing plastic. Thin regions force the flow to travel quicker at a constant fill rate, generating shear stress. Warpage is caused by varying degrees of shear stress over a portion. This shear stress also helps to orient fiber reinforcements. Fibers are substantially stiffer in the flow direction than at 90 degrees to the flow, and changing stiffness can also cause warping.

Schlussfolgerung:

All in all, to avoid non-uniform wall thickness issues from occurring during and after the plastic products production through the injection molding process, you should trust a professional to help you with the production. For further queries and details, feel free to consult with our professional technicians at Prototool.

The post Plastic Products Wall Thickness: The Most Recommended Reference appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/plastic-products/feed/ 0
Was macht die besten digitalen Fertigungsunternehmen aus? https://prototool.com/de/digital-manufacturing-companies/ https://prototool.com/de/digital-manufacturing-companies/#respond Sun, 30 Oct 2022 15:06:26 +0000 https://prototool.com/?p=6749 What Makes The Best Digital Manufacturing Companies?
Prototool

Today, we are in the midst of the fourth industrial revolution, which is being propelled by the overall digital manufacturing processes. Creators and consumers can use software to create digital twins of physical products, big and small. Augmented and virtual reality makes it possible to see and try these things. Cloud computing facilitates global electronic […]

The post What Makes The Best Digital Manufacturing Companies? appeared first on Prototool written by Prototool.

]]>
What Makes The Best Digital Manufacturing Companies?
Prototool

Heute befinden wir uns inmitten der vierte industrielle Revolutiondie von der allgemeinen Wirtschaftsentwicklung angetrieben wird. digitale Fertigung Prozesse. Kreative und Verbraucher können mit Hilfe von Software digitale Zwillinge von großen und kleinen physischen Produkten erstellen. Augmented und Virtual Reality machen es möglich, diese Dinge zu sehen und auszuprobieren. Cloud Computing erleichtert die globale elektronische Beschaffung der Komponenten des Produkts. Die Verwendung jeder Komponente kann entlang der Lieferkette verfolgt und überwacht werden. In dieser Zeit schossen die digitalen Fertigungsunternehmen wie Pilze aus dem Boden.

Die vierte industrielle Revolution wird wahrscheinlich durch die Digitalisierung aller Produktionsstufen vorangetrieben werden. Im Gegensatz zu früheren Prozessen, die durch neue Produktionstechniken vorangetrieben wurden, ist die vierte industrielle Revolution durch die riesigen Datenmengen gekennzeichnet, die auf allen Stufen der industriellen Produktion verfügbar sind. Die Entwicklung der digitalen Produktion wird zu einem großen Teil durch diese Digitalisierung vorangetrieben.

Digitale Fertigungsunternehmen in China
Digitale Fertigungsunternehmen in China

Was ist digitale Fertigung?

Der Begriff "digitale Fertigung" bezieht sich auf die Einbindung von Computern und anderen digitalen Geräten in jeden Schritt des Fertigungsprozesses. In diesem Sinne beginnt die digitale Fertigung mit der Ideenfindung und der Planungsphase der Produktion. Danach folgen die Prototyping- und Proof-of-Concept-Schritte. Der nächste Schritt ist die Herstellung des Artikels für den Verkauf an den Kunden. Die Anwendungsfälle gehen nun über die Fertigung hinaus und umfassen auch die laufende Produktüberwachung und -wartung.

Die Entscheidungsfindung in der Fertigung kann durch die Simulation und Modellierung von Prozessen verbessert werden, was auch zu Kosteneinsparungen, kürzeren Markteinführungszeiten und einem rationalisierten Prozess führen kann, der digitale Werkzeuge mit der tatsächlichen Ausführung der Fertigung kombiniert.

Um die in allen Phasen des Produktlebenszyklus gesammelten Daten zu analysieren und geeignete Verfahren einzurichten, können Unternehmen von der Einführung eines computergesteuerten Prozesses profitieren. Für eine kundenorientierte Produktion erleichtern digitale Fertigungssysteme auch die Übermittlung von Kundendaten an die Produktmanager zum Zwecke der Nachfrageprognose und der Ermittlung des laufenden Wartungsbedarfs.

Vorteile der digitalen Fertigung

Digitale Technologien, wie z. B. die digitale Fertigung, haben mehrere Vorteile: kürzere Markteinführungszeiten, niedrigere Kosten, robustere Lieferketten und ein besseres Kundenerlebnis. Außerdem kann der Übergang von der analogen zur digitalen Fertigung die Agilität eines Unternehmens erhöhen und die Verschwendung im gesamten Produktionsprozess verringern. Die Vorteile liegen klar auf der Hand. Die Digitalisierung ermöglicht den einfachen Ersatz ineffizienter Prozessmanagement-Tools.

Dieses gewisse Extra wird für den Durchschnittsverbraucher immer wichtiger. Der Verbraucher möchte das neueste Produkt, über das in den sozialen Medien am meisten gesprochen wird, und natürlich muss es in der von ihm bevorzugten Größe und Farbe verfügbar sein und noch vor dem Zoom-Gruppenchat am Wochenende verschickt werden. Aufgrund der Flexibilität von digitale Fertigungkönnen Unternehmen schnell auf Veränderungen der weltweiten Nachfrage nach ihren Produkten reagieren.

Digital Manufacturing Company Szene

Viele der Prozessabfälle, die durch die schlanke Produktion minimiert werden sollten, können dank der Digitalisierung des gesamten Produktionsprozesses reduziert oder beseitigt werden. In der Fertigung gibt es acht Arten von Verschwendung: Fehler, zusätzliche Bearbeitung, Überproduktion, Wartezeiten, Lagerbestände, Transport, Bewegung und nicht ausgelastete Talente. In der Automobilindustrie wurden die Techniken der schlanken Produktion in großem Umfang eingesetzt. Sie schränkte die Wahlmöglichkeiten der Verbraucher ein und legte jährliche Produktionsquoten für bestimmte Fahrzeugtypen fest.

Es wurde vorausgesagt, dass die weitere Digitalisierung des Produktionsprozesses zu einer weitgehenden Beseitigung oder drastischen Verringerung von Verschwendung führen würde, wie sie bei traditionellen Fertigungsverfahren üblich ist. Jahrzehntelang haben die Befürworter der "schlanken Produktion" nach Lösungen für eine Vielzahl von Problemen gesucht, und diese Umstellung auf die digitale Produktion könnte sie endlich liefern.

Die besten Softwaresysteme für digitale Fertigungsunternehmen

Es gibt nicht den einen "idealen" Ansatz für die digitale Fertigung, weil es so viele unterschiedliche Produktionsverfahren gibt. Fast jedes Produktionsverfahren kann auf digital umgestellt werden, wenn das physische Verfahren aufgegeben wird. Infolge des scheinbar unendlichen Angebots an Softwaretools, kreativen Erfindern und Finanzmitteln zur Unterstützung der Ziele und Bestrebungen von Start-ups ist der Auswahlprozess für Unternehmen der digitalen Fertigung immer schwieriger geworden.

Etablierte Unternehmen der digitalen Fertigung finden sich auf den Märkten für computergestütztes Design (CAD), Produktlebenszyklusmanagement (PLM) und Unternehmensressourcenplanung (ERP) Software. Auch wenn andere Formen von Software noch in den Kinderschuhen stecken, haben sie ein schnelles Wachstum und Investitionen erlebt, um die Nachfrage der Verbraucher zu befriedigen. In diesem Abschnitt gehen wir auf verschiedene Arten von Software ein, die für den Betrieb digitaler Fertigungsunternehmen im Zeitalter der vierten industriellen Revolution erforderlich sind.

- Computerunterstützte Entwurfssoftware

Der Markt für CAD-Programme hat seine volle Entwicklung und Sättigung erreicht. Die Entwicklung der verschiedenen CAD-Tools auf dem Markt erstreckt sich über Jahrzehnte. Es ist wichtig, darauf hinzuweisen, dass diese Gruppe Software enthält wie AutoCAD von Autodesk sowie Creo, SolidWorks und Catia von PTC und Dassault Systèmes. Der Produktionsprozess wird durch diese Instrumente, die sich nicht auf die Zeichnungs- und Entwurfsphase beschränken, erheblich erleichtert. Um das Endprodukt genau darzustellen, bietet moderne Konstruktionssoftware den Konstrukteuren einen digitalen Zwilling. Der digitale Zwilling gewinnt zunehmend an Bedeutung, da er es Unternehmen ermöglicht, mehrere Phasen des digitalen Fertigungsprozesses digital zu replizieren.

Computer Aided Design Personal
Personal für computergestützte Konstruktion

- 3D-Druck

Die Entwicklung von 3D-Druck hat sich in den letzten Jahren beschleunigt. Die Allgegenwart des 3D-Drucks in der digitalen Fertigung nimmt zu, ebenso wie seine Einsatzmöglichkeiten und Anwendungen. Die meisten CAD-Programme sind auch für den 3D-Druck geeignet, was eine gute Nachricht ist. Das von einem 3D-Drucker hergestellte Bauteil oder Produkt wird anhand von CAD-Konstruktionsdateien erstellt. Es gibt Software, mit der massive Modelle erstellt werden können, und es gibt Software, mit der Modelle ohne jegliche Wände erstellt werden können. Modelle ohne Wandstärke eignen sich gut für 2D-Medien, können aber nicht für den 3D-Druck von massiven Modellen verwendet werden.

- Das Internet der Dinge

In den letzten zehn Jahren hat die Verfügbarkeit von IoT- und IIoT-Geräten erheblich zugenommen. Gegen eine geringe Gebühr können Sie fast jedes Produkt mit hochtechnologischen, vernetzten Diensten ausstatten. Für nur wenige Dollar lassen sich kleine Chipsätze herstellen, die drahtlos biometrische, telemetrische, Temperatur- und Standortdaten übertragen können. Herauszufinden, was und wie man mit all diesen Daten umgehen soll, ist zu einer neuen Herausforderung geworden. Daraus ergibt sich eine große Anzahl von Anwendungen für die Softwaretools, die diese Daten für die Hersteller auswerten. Einige Programme dienen als IoT-Plattformen, während andere auf die besonderen Anforderungen eines bestimmten Marktsegments, z. B. der Smart-Home-Industrie, zugeschnitten sind.

Die intelligente Fertigung bietet zahlreiche Möglichkeiten für die Anwendung von AI. Die Entwicklung der Technologie der künstlichen Intelligenz (KI) zielt darauf ab, die menschliche Intelligenz zu ergänzen und schließlich zu ersetzen. Die Identifizierung von Objekten ist ein Beispiel für eine Aufgabe, die von Software und Hardware übernommen werden kann; ein anderes Beispiel ist die Durchführung von Berechnungen mit großen Datenmengen, die für einen Menschen zu viel wären.

Zwei Beispiele dafür, wie Technologien der künstlichen Intelligenz (KI) den Fertigungssektor verändern, sind die Übersetzung von Sprache in Text und die Objekterkennung. Sie ermöglichen es auch, dass autonome mobile Lösungen in der Fabrik neben Menschen arbeiten können. Robuste KI-Systeme verfolgen Marktbewegungen, um Entscheidungen über Produkt- und Lieferkettenstrategien zu treffen. Die kontinuierliche Entwicklung und Verfeinerung von KI-Anwendungen in digitalen Fertigungsprozessen wird einige faszinierende Innovationen hervorbringen.

- Fertigungsrobotik

Roboterlösungen, die sich nicht auf Software beschränken, sind von grundlegender Bedeutung für den Übergang zur digitalen Produktion. Robotikbasierte Produkte und Dienstleistungen können für eine Vielzahl von Anwendungen eingesetzt werden. Es gibt große Gelenkroboter, die die Stellen an einem Auto löten können, autonome Roboter, die in der Fabrikhalle navigieren können, und kleinere, billigere Roboter, die selbstständig kleinere Aufgaben erledigen können. Früher waren sie unerschwinglich teuer, aber das hat sich durch die erheblichen Preissenkungen der letzten Zeit geändert. Robotiklösungen werden immer wichtiger in digitale Fertigung.

- PLM

PLM-Software (Product Lifecycle Management) verfolgt und berichtet über alle Aspekte der Existenz eines Produkts von der Entstehung bis zur Ausmusterung. Unternehmen nutzen PLM, um ihre Bemühungen in allen Bereichen zu koordinieren, von der Konzeption über die Marktforschung bis hin zur Erstellung mehrerer Iterationen des Portfolios. PLM-Lösungen erfüllen die Anforderungen vertikaler Branchen. An der Entwicklung von CAD- und PLM-Software sind Experten aus verschiedenen Bereichen beteiligt.

- Cloud Computing

Aufgrund seiner Überlegenheit als Softwarebereitstellungsmodell wird das Cloud Computing in die Liste der "ausgezeichneten" Systeme aufgenommen. Digitale Hersteller und industrielle Softwareunternehmen haben die Cloud-Computing-Technologien am langsamsten eingeführt. Cloud Computing ist die Zukunft der Unternehmenssoftware, aber einige PLM-, CAD- und ERP-Anbieter bieten nach wie vor Optionen für den Einsatz vor Ort an. Der Anbieter, nicht der Entwickler, ist dafür verantwortlich, dass die Cloud-basierte Software sicher und auf dem neuesten Stand ist.

Schlussfolgerung

Letztendlich ist die Identifizierung von Verbesserungsmöglichkeiten, die zu erheblichen Kundenvorteilen führen, ein effektiver Weg, um eine digitales Manuskriptfhandelnd Umwandlung.

Sie sind sicher bereit, Ihre digitale Transformation voranzutreiben? Kontaktieren Sie Prototool wenn Sie eine außergewöhnliche helle Produktionseinheit entwickeln wollen, die die Steigerung Ihrer Geschäftsprozesse unterstützen und das Wachstum erleichtern kann.

The post What Makes The Best Digital Manufacturing Companies? appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/digital-manufacturing-companies/feed/ 0