Prototool https://prototool.com/pt/ Sítio Web oficial da Prototool Thu, 25 Jan 2024 14:18:04 +0000 pt-PT por hora 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Prototool https://prototool.com/pt/ 32 32 Design do chefe: Elementos-chave, directrizes de conceção, problemas comuns e soluções https://prototool.com/pt/boss-design/ https://prototool.com/pt/boss-design/#respond Thu, 25 Jan 2024 14:14:16 +0000 https://prototool.com/?p=17241 Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions
Prototool

Compreender o design do chefe na moldagem por injeção, centrando-se nos elementos-chave, orientações de design e soluções de peças moldadas em plástico.

The post Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions appeared first on Prototool written by Prototool.

]]>
Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions
Prototool

Moldagem por injeção é uma pedra angular na fabrico de "peças de plásticoA empresa desempenha um papel fundamental em diversos sectores. De equipamento médico para interiores de automóveis, caixas electrónicas para utensílios domésticos de uso diárioe não só, a omnipresença das peças moldadas por injeção é inegável.

O processo envolve a fusão de plástico em bruto num máquina de moldagem por injeçãoA partir de então, o material é moldado num molde e deixado arrefecer e solidificar, produzindo componentes de design complexo.

A complexidade da conceção de peças de plástico exige uma atenção meticulosa a vários factores, incluindo requisitos funcionais, seleção de materiais e considerações estruturais. Entre os elementos-chave cruciais para este processo de design estão espessura da parede, rascunho, texturas, costelas, e, nomeadamente, chefes.

desenho de saliência para peça moldada por injeção

Servindo como pontos de fixação e montagem, as saliências são normalmente projecções cilíndricas com orifícios estrategicamente colocados para parafusos ou inserções roscadas. É fundamental assegurar a eficácia do seu design, exigindo raios de base generosos para maior resistência e um amplo calado para uma remoção perfeita das peças do molde.

Este blogue aborda as orientações fundamentais para design do chefe em peças moldadas por injeção, com o objetivo de melhorar a moldabilidade, prolongar a vida útil do molde, aumentar a longevidade operacional da peça e reduzir os custos de fabrico.

Design do chefe: Uma breve panorâmica

Em plástico conceção de peças moldadasUm elemento crucial que requer atenção é o conceito de desenho do chefe. O que constitui exatamente uma saliência nas peças moldadas? No fundo, uma saliência é uma caraterística estrutural - uma projeção cilíndrica que apresenta orifícios estrategicamente colocados em componentes moldados.

A principal função das saliências consiste em fornecer pontos de fixação para parafusos, fixadores ou outro material de montagem essencial. Estas características desempenham um papel fundamental na facilitação de processos de montagem suaves, assegurando simultaneamente a integridade estrutural do produto final.

Compreender e dominar o design da saliência é indispensável para otimizar a funcionalidade e a capacidade de fabrico das peças moldadas em plástico.

Elementos de design do chefe

A conceção eficaz da saliência é fundamental para a integridade estrutural das peças moldadas. Para obter uma resistência óptima sem comprometer o design geral, vários elementos-chave exigem uma análise cuidadosa:

Rácio de espessura

A espessura da parede das saliências não deve exceder 60 por cento da espessura da parede principal da peça. Atingir este equilíbrio é crucial para garantir a resistência da saliência sem comprometer a integridade estrutural global da peça moldada.

 Rácio do raio de base

A estabilidade e a prevenção de deformações durante o fabrico dependem em grande medida do rácio do raio de base. Um raio de base deve ser, pelo menos, 25% da espessura da parede principal, proporcionando uma base robusta. Isto corresponde a um diâmetro de base de, pelo menos, 50 por cento, contribuindo para a resiliência global da saliência.

Ligação a paredes adjacentes

Os chefes devem ser sempre ligados às paredes adjacentes utilizando nervuras ou reforços. Esta ligação estratégica ajuda a evitar a criação de secções espessas, minimizando o risco de deformação durante o processo de fabrico. Uma conceção cuidada garante uma integração perfeita dos ressaltos na estrutura global da peça.

 Relação de filetes na base

Como ponto de fixação entre duas superfícies, a base das bossas requer um rácio de filetes para uma maior resistência. Esta medida preventiva protege contra potenciais tensões induzidas pela inserção de parafusos ou outras ferragens, assegurando a resiliência e minimizando o risco de fratura.

A incorporação de uma relação de filete é um passo crítico para aumentar a longevidade e a fiabilidade da saliência dentro da peça moldada.

saliências típicas num desenho de uma peça de plástico

10 Directrizes Críticas de Conceção de Boss para Peças de Plástico Moldado

1. Raio mínimo na base da saliência

A implementação de um filete com um raio mínimo específico na base de um ressalto é imperativa para mitigar a concentração de tensões. Este raio é estrategicamente colocado onde a saliência intersecta a parede nominal, reduzindo efetivamente as tensões e melhorando a integridade estrutural global.

Embora o raio proporcione resistência, deve ser cuidadosamente controlado para evitar secções espessas, equilibrando o suporte estrutural e a capacidade de fabrico. O intervalo recomendado para este raio de base é de 0,25-0,5 vezes a espessura nominal da parede, garantindo um desempenho ótimo durante o processo de moldagem.

2. Espaçamento entre chefes

A colocação estratégica das saliências é crucial para evitar a criação de áreas finas que colocam desafios no processo de arrefecimento. A manutenção de um espaçamento adequado entre as saliências, idealmente pelo menos 2 vezes a espessura nominal da parede, é essencial para um arrefecimento eficiente e para a melhoria da qualidade.

A proximidade entre chefes pode levar a dificuldades de arrefecimento, afectando a produtividade e vida do molde. O espaçamento correto é fundamental para garantir um arrefecimento uniforme e aumentar a longevidade do molde.

3. Raio na base do furo no topo

A introdução de um raio na base do furo numa saliência tem várias finalidades, incluindo evitar cantos afiados e concentração de tensões. Esta caraterística de conceção ajuda no processo de moldagem e contribui para a redução da tensão, garantindo a longevidade da peça moldada.

O raio recomendado na base do furo na saliência situa-se no intervalo de 0,25 a 0,5 vezes a espessura nominal da parede, atingindo um equilíbrio entre a capacidade de fabrico e a redução de tensões.

4. Calado mínimo para o diâmetro externo do chefe

Para garantir uma fácil ejeção do molde, é necessário um calado adequado na diâmetro exterior (DE). Esta inclinação, normalmente maior ou igual a 0,5 graus, facilita um processo de desmoldagem suave.

Um calado adequado na superfície exterior da saliência não só agiliza o fabrico como também contribui para a eficiência do processo de moldagem por injeção, minimizando os desafios da produção.

5. Calado mínimo para identificação do chefe

As considerações de projeto requerem frequentemente um cone mínimo no diâmetro interior (ID) de uma saliência para um encaixe adequado com os fixadores.

Recomenda-se uma tiragem igual ou superior a 0,25 graus nas paredes interiores da saliência, de modo a garantir uma boa vedação. desmoldagem e estabelecendo um ajuste seguro para os fixadores. Este esboço no ID contribui tanto para a capacidade de fabrico como para a funcionalidade da peça moldada final.

6. Relação entre a altura da cabeça e o diâmetro externo

Encontrar o equilíbrio correto entre a altura da saliência e o diâmetro exterior (DE) é crucial para prevenir massa do material e secções espessas na base.

Com uma altura recomendada inferior a três vezes o diâmetro exterior, esta diretriz de conceção permite um arrefecimento eficaz, uma redução de tempo de cicloe a exatidão dimensional dos furos. Uma correcta rácio altura/OD é essencial para um desempenho ótimo da peça.

7. Raio mínimo na extremidade do ressalto

Para suportar cargas variáveis durante as condições de serviço, é essencial fornecer um filete com um raio mínimo específico na ponta de uma saliência. Esta caraterística de conceção reduz eficazmente a concentração de tensões e aumenta a durabilidade geral e a vida útil da peça moldada.

O raio mínimo recomendado na ponta contribui para a resiliência global do ressalto em diferentes cenários de carga.

8. Chanfro na parte superior da cabeça

Incorporação de um chanfro no topo de uma saliência é um avanço benéfico para os fixadores durante o processo de montagem. Esta caraterística de design assegura um encaixe e alinhamento suaves durante a montagem, simplificando o processo de fabrico.

O chanfro na parte superior da saliência contribui para a facilidade de montagem e para a qualidade geral da peça moldada final.

9. Espessura da parede do chefe

Mantendo uma espessura de parede ideal para as saliências, cerca de 60 por cento do parede nominalé fundamental para evitar problemas como vazios, marcas de afundamentoe tempos de ciclo alargados.

Embora exceder esta espessura possa levar a desafios de fabrico, o ajuste da espessura da parede pode ser considerado para saliências em áreas não visíveis, permitindo maiores tensões impostas pelos parafusos auto-roscantes. Encontrar o equilíbrio certo na espessura da parede é essencial para um desempenho ótimo da peça.

10. Chefe autónomo

Recomenda-se a implementação de um sistema de perfuração para as saliências e outras secções espessas para garantir um fluxo de material e uma distribuição de carga uniformes. A fixação da saliência à parede lateral aumenta a rigidez e o fluxo de material, contribuindo para a integridade estrutural global da peça moldada.

Esta consideração de design é crucial para alcançar um melhor desempenho e capacidade de fabrico das peças.

conceção do chefe no proE

Os desafios e as soluções na conceção de chefes

A conceção incorrecta da saliência coloca desafios que podem afetar significativamente a estética e a funcionalidade das peças moldadas. Quais são esses desafios? Como é que os pode resolver? Vamos explorar a seguir.

Causas de marcas de afundamento e deformação

Desafio

Um dos principais desafios na conceção de bosses é o potencial para marcas de afundamento e deformações. Quando as saliências são concebidas de forma inadequada - quer sejam excessivamente espessas ou sem o reforço adequado - arrefecem a taxas diferentes das áreas circundantes.

Esta disparidade de temperatura pode levar a marcas de afundamento inestéticas, criando depressões na superfície e deformações, fazendo com que a peça se desvie da sua forma pretendida.

Solução

A resolução deste desafio envolve a otimização da espessura da parede das saliências e a incorporação de nervuras de reforço. Uma espessura de parede adequada assegura um arrefecimento uniforme, minimizando o risco de marcas de afundamento e deformação. As nervuras de reforço são cruciais para distribuir a tensão uniformemente pela saliência, evitando deformações localizadas e melhorando a integridade geral da peça.

Impacto no tempo de arrefecimento e no tempo de ciclo

Desafio

As saliências influenciam diretamente o arrefecimento e os tempos de ciclo durante o processo de moldagem. Nos casos em que as saliências são excessivamente espessas ou mal concebidas, podem reter calor, resultando em tempos de arrefecimento e de ciclo prolongados.

Isto não só torna o processo de fabrico mais lento, como também conduz a aumento dos custos de produção.

Solução

A atenuação do impacto no arrefecimento e nos tempos de ciclo envolve ajustes estratégicos nos canais de arrefecimento dentro do molde. A otimização do design geral do molde, com especial atenção à colocação das saliências, pode minimizar os efeitos adversos no arrefecimento e nos tempos de ciclo.

Seleção e compatibilidade limitadas de materiais

Desafio

O material selecionado para as peças moldadas influencia significativamente a conceção da saliência. A escolha de um material incompatível pode sujeitar a saliência a tensões excessivas, podendo levar a fissuras ou falhas.

Solução

A superação deste desafio passa pela seleção dos material correto para o design do chefe. Optar por um material com a força, a rigidez e a resistência química necessárias para garantir que o ressalto possa suportar as cargas e as condições ambientais.

A seleção de materiais é crucial para obter designs de saliências duradouros e fiáveis em peças moldadas.

elevada qualidade na conceção

Conclusão

As saliências em peças moldadas por injeção são características cruciais, actuando como âncoras, suportes e facilitadores de uma montagem fiável. Estes componentes desempenham um papel crucial para garantir a integridade estrutural e o desempenho ótimo do produto final.

O cumprimento das directrizes fundamentais de design é imperativo para produzir peças de plástico com bossas robustas, funcionais e visualmente apelativas.

Para aqueles que procuram peças moldadas de alta qualidade com um design de saliência fiável, Prototool surge como a escolha óptima. O nosso serviços de moldagem por injeção são apoiados por uma equipa experiente e empenhada em satisfazer as suas necessidades específicas. Quer saber mais? Entre em contacto hoje mesmo!

The post Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/boss-design/feed/ 0
Estratégias para uma conceção de produtos bem sucedida com os materiais certos https://prototool.com/pt/successful-product-design-with-the-right-materials/ https://prototool.com/pt/successful-product-design-with-the-right-materials/#comments Sun, 21 Jan 2024 15:10:47 +0000 https://prototool.com/?p=17233 Strategies for Successful Product Design with the Right Materials
Prototool

Vamos discutir o papel da seleção de materiais para a conceção de produtos, centrando-nos na colaboração com os moldadores para obter produtos esteticamente agradáveis.

The post Strategies for Successful Product Design with the Right Materials appeared first on Prototool written by Prototool.

]]>
Strategies for Successful Product Design with the Right Materials
Prototool

Have you ever wondered what sets apart the designers who nail peças moldadas por injeção? There’s a league of experts who don’t just design parts but ace the game of crafting them for moldadores por injeção. As we dive into the world of injection molding, where precision meets production, we’re unraveling a crucial strategy for success: teaming up with your molder.

This isn’t your typical moldagem por injeção talk; we’re exploring the sweet spot where design intricacies and molding expertise converge. So, if you’re excited to make the most of your teamwork with the molder to ensure you choose the right materials when finalizing the design and processing of the production of your product, this article is just for you.

plastic material selection for product design

Keep reading to learn all about creating successful product designs with the right production materials.

Key Considerations for Designing High-Quality Molded Parts

Before embarking on the intricate journey of designing peças moldadas for injection molding, it is paramount to grasp the significance of key considerations. Understanding these considerations lays the groundwork for a collaborative and efficient design process.

By delving into the nuances of material consideration in product design, critical tolerances, marcas de afundamento, steel safe areas, and gate locations, designers can navigate potential challenges and optimize their designs for successful production. Now, let’s explore each consideration below in detail:

Material Options and Consequences

To begin with, understand the significance of material consideration to product design in designing premium molded parts. Collaborate effectively with molders by reaching a crucial agreement on specified resins – this forms the bedrock for a seamless production process.

Collaborate effectively with molders by reaching a crucial agreement on specified resins

Regarding material properties, align your choices with your molder’s preferences to unlock significant cost savings. If you’re dealing with high-performance resins, navigate challenges like viscosity, glass content, and crystallinity – these factors can significantly impact design precision and production efficiency.

Critical Tolerances

In injection molded part design, mastering tolerâncias apertadas requires a strategic blend of collaboration and insight. Understand the factors influencing tolerance variation, such as materials, process control, and tool design.

As a designer, it’s crucial to provide generous tolerances when feasible, but there are instances where tight tolerances become non-negotiable for fit, function, or appearance. You should also uncover practical suggestions for maintaining precise tolerance control, whether it’s through post-machining techniques or strategic gate locations.

mastering tight tolerances requires a strategic blend of collaboration and insight

Furthermore, it’s important to understand tolerance management in injection molding for optimal fit, function, and aesthetics.

Marcas de pia

Achieving cosmetic perfection in injection molded parts is an ongoing goal, and a key element to grasp is the intricacies of sink marks. Understand the guidelines that dictate maximum espessura da parede and their direct impact on the appearance of your design.

Work closely with your molder to tackle challenges stemming from the introduction of ribs, chefese draft angles. To anticipate and eliminate sink marks, explore solutions like minimizing draft, adjusting rib heights, and incorporating other design features.

By incorporating these strategies, you’ll enhance the visual appeal of your injection molded parts and achieve the coveted cosmetic perfection.

Steel Safe Areas

Achieving precision in injection molded part design demands meticulous attention, especially regarding snap fits, alignment featurese interlocking parts. Understand the significance of “steel safe” design features – meticulously planned clearances allowing adjustments after initial test shots.

By incorporating this foresight into your design, you sidestep complications and delays associated with welding. Collaborating closely with your selected molder is important, emphasizing early engagement to minimize revisions, establish critical dimensions, and make informed decisions about steel-safe areas.

This ensures a streamlined design process and paves the way for precision in every injection molded part.

Gate Location

Strategically placing gates in injection molded parts is a make-or-break factor influencing various attributes. Delve into the collaborative process involving designers, molders, and tool makers when specifying gate locations.

Acknowledge the effects that gate placement has on appearance, warpage, tolerances, acabamento da superfície e physical properties. Moreover, you can challenge conventional norms and explore the role of mold flow simulations in guiding gate design, ensuring it doesn’t compromise part performance, appearance, or fit.

Tips for Successful Product Design with the Right Materials

Before we get into the details, let’s talk about why these considerations matter to your product design. Crafting a killer design isn’t just about looks. In fact, it’s also about making sure your creation looks good and performs exceptionally.

We’re talking about understanding material properties, being cost-savvy without compromising quality, ensuring your product can endure, and, of course, making it visually appealing. And hey, being eco-conscious is pretty cool too.

Now, let’s dive into key strategies to help you ace the material consideration in product design:

Identify Key Material Properties and How They Shape Your Design

Understanding material properties is like having the blueprint for effective product design. This strategy deeply delves into the intricacies of key material properties such as tensile strength, ductility, elasticity, and thermal conductivity.

This will help you learn how these properties shape your design process and influence your final masterpiece’s overall performance and durability.

Identify Key Material Properties and How They Shape Your Design

Examine the Cost Efficiency of Different Materials

While your creative spark fuels your design, this strategy gears you up for the practical side – cost efficiency. Take a guided tour through a comprehensive analysis of the cost efficiency of various materials.

Furthermore, it’s important to delve not only into initial costs but also into long-term considerations, arming yourself with the knowledge to make decisions that elevate product quality and sustainability.

Evaluate the Strength and Durability of Materials

As a designer, strength and durability are your trusty sidekicks. This strategy breaks down the evaluation process, walking you through tests for tensile and compressive strength, impact resistance, and fatigue.

Don’t forget to gain insights into the significance of understanding material strength, empowering you to select materials that endure and excel in diverse applications.

Consider How Materials Respond to Environmental Conditions

For you, crafting environmentally resilient designs is crucial. This strategy sheds light on how materials respond to specific environmental conditions. Choose materials that ensure longevity and functionality if your creation faces scorching temperatures or relentless UV radiation.

Once that’s done, you can seamlessly incorporate environmental considerations into your design process for end products that stand the test of time.

Analyze the Aesthetic Qualities of Materials

Beyond functionality, aesthetics are your playground. This strategy explores the impact of texture, color, finish, and pattern on consumer perceptions. 

It is also important to understand how aesthetic qualities influence your material consideration in product design, shaping the visual identity of your creation. From matte finishes to reflective surfaces, become a master in creating visually appealing and harmonious designs.

Investigate the Sustainability of Materials

As a designer, sustainability isn’t just a buzzword for you. Instead, it’s a design principle. This strategy emphasizes the importance of investigating the sustainability of materials.

Make sure to scrutinize material sourcing, production processes, and end-of-life disposal to make choices that align seamlessly with your environmental consciousness. You should also explore the versatility of sustainable materials, like bamboo, and play your part in creating a more eco-friendly design landscape.

Injection Molding Design Guide: Material Selection

Ultimately, choosing the right materials is a critical aspect of injection molding, influencing everything from product durability to cost-effectiveness.

In this article section, we’ll walk you through key considerations for material selection in product design, ensuring that your injection molding endeavors result in successful and efficient outcomes.

  • Appearance and Texture of Injection Molding Parts: Extend it way beyond functional – ensure the appearance and feel of your injection-molded parts. Learn how different plastics affect how surfaces look and feel. This matters a lot, especially when you want your products not just to work well but also look good.
  • Temperature Range and Cost Considerations: Temperature is a big deal in injection molding. Understand how to choose materials that can handle the right temperature. Plus, we’ll talk about costs – how to pick materials that fit your budget but still do the job. It’s all about finding that sweet spot between what works, lasts, and doesn’t break the bank.
  • Environmental Factors and Use Environment: Consider where your injection-molded parts will be used. Whether dealing with heat or tough conditions, the right material consideration in product design means your products can handle it. Get a grip on what keeps your products lasting and strong in different situations.

Injection Molding Design Guide: Part Design

Making great products with injection molding starts with smart design. This guide zooms in on how to create parts that work seamlessly with the injection molding process. From nailing down the basics of wall thickness to choosing materials that fit the bill, these tips help you design parts that rock in injection molding.

  • Wall Thickness Basics for Injection Molded Parts: What is the core of creating parts in injection molding? Knowing the basics of how thick your walls should be. To figure out the right thickness for different materials, check out the suggestions in the table below:
MATERIALRECOMMENDED WALL THICKNESS
ABS0.045 in – 0.140 in
Acetal0.030 in – 0.120 in
Acrílico0.025 in – 0.500 in
Polímero de cristais líquidos0.030 in – 0.120 in
Long-Fiber Reinforced Plastics0.075 in – 1.000 in
Nylon0.030 in – 0.115 in
Policarbonato0.040 in – 0.150 in
Polyester0.025 in – 0.125 in
Polyethylene0.030 in – 0.200 in
Sulfureto de polifenileno0.020 in – 0.180 in
Polipropileno0.025 in – 0.150 in
Poliestireno0.035 in – 0.150 in
Polyurethane0.080 in – 0.750 in

This comprehensive material chart serves as a practical tool, offering precise recommendations for wall thickness based on the material selected, ensuring a smooth and efficient injection molding process.

Conclusão

Mastering the art of material selection in product design is essential for successful injection molding. By following these methods, product designers can find the right mix of practicality, good looks, and affordability. Stay tuned for more insights and guidelines to elevate your injection molding game.

Still struggling with the design process? Don’t worry! Now, you can elevate your injection molding game, consider partnering with Prototool, a trusted and professional CNC manufacturing and injection molding service provider.

Our expertise aligns seamlessly with the strategies discussed, ensuring your material selection in product design and designing process is executed with precision, delivering products that excel in functionality, aesthetics, and cost-effectiveness. Contact our professionals today!

The post Strategies for Successful Product Design with the Right Materials appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/successful-product-design-with-the-right-materials/feed/ 2
Dominar a precisão: Um mergulho profundo na Inspeção Dimensional na Moldagem por Injeção https://prototool.com/pt/dimensional-inspection-in-injection-molding/ https://prototool.com/pt/dimensional-inspection-in-injection-molding/#respond Sun, 21 Jan 2024 03:10:17 +0000 https://prototool.com/?p=17224 Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding
Prototool

O artigo centra-se na função-chave da inspeção dimensional na moldagem por injeção e discute a utilização de tipos de equipamento para medição.

The post Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding appeared first on Prototool written by Prototool.

]]>
Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding
Prototool

Ever wondered how manufacturers ensure that each component aligns precisely with its design specifications in the intricate world of moldagem por injeção? The answer lies in dimensional inspection—a sophisticated process vital for maintaining precision and quality in manufacturing.

Dimensional inspection, also known as dimensional metrology, stands at the forefront of contemporary image sensor applications, providing a means to test components swiftly as they progress through the manufacturing line.

Dimensional Inspection for Injection Molded Part

This inspection process goes beyond a mere measurement tool. Precisely, dimensional testing is a cornerstone for validating new processes, comparing prototypes to CAD models, and ultimately ensuring the seamless execution of manufacturing processes.

In this article, we’ll explore dimensional inspection within the context of injection molding, catering to our intermediate and pro-level readers who are well-versed in the concept but seek deeper insights into its incorporation and optimal utilization.

Why is Dimensional Inspection Important?

Dimensional inspection, a crucial element in the world of injection molding, serves as a cornerstone for achieving unparalleled precision and accuracy. It is a steadfast guardian, ensuring meticulous controlo de qualidade throughout manufacturing.

Using hand tool to make dimensional inspection

This sophisticated method meticulously verifies every facet of production, whether through spot checks, automated inspections, or scrutiny of freshly produced items, upholding the highest quality standards.

Verifying the Manufacturing Process

Dimensional inspection stands as a cornerstone in the injection molding landscape, paramount in ensuring the integrity of the manufacturing process. By conducting meticulous spot checks, this process offers a thorough examination, allowing manufacturers to maintain consistent quality across all production batches.

First Article Inspection Skills

When the first product emerges from production, dimensional testing takes the spotlight, providing invaluable insights into the successful execution of the manufacturing process. This critical phase sets the tone for the entire production run, emphasizing the importance of precision from the very outset.

High-Precision Engineering Exploration

Delving into the minutiae of assemblies, dimensional inspection reveals the impact of even the tiniest components, such as micro-gears, on the broader production assembly. This scrutiny ensures that every intricate part contributes seamlessly to the overall precision of the manufacturing process.

Navigating Regulatory Compliance

In the complex manufacturing landscape, adherence to regulatory standards is non-negotiable. Dimensional testing emerges as a stalwart guardian, ensuring that every product and process aligns meticulously with specifications outlined by regulatory bodies like the FDA ou FAA.

Choosing the Right Equipment for Dimensional Inspection

Regarding dimensional inspection, the options for measurement tools are vast, ranging from nano-scale surfaces to aircraft engine turbines. However, selecting the appropriate equipment is paramount. To make an informed choice, consider the following features essential for dimensional testing devices:

  • Befitting Budget: Assess the device’s cost to ensure it aligns with your budget constraints.
  • Accuracy and Precision: The equipment should facilitate precise and accurate inspections, ensuring reliable results.
  • Efficiency: Opt for tools that enable swift and efficient inspections, saving time and resources.
  • Functionality: Ensure the selected equipment serves the specific functions required for your dimensional inspection needs.
Use machine to make an inspection

Factors like reliability, durability, ease of maintenance, and operational simplicity should not be overlooked. Choosing the right equipment is a crucial step towards mastering precision in dimensional testing, contributing to enhanced quality control in the manufacturing process of finished products.

6 Dimensional Inspection Equipment Categories You Should Know About

In the intricate world of injection molding, dimensional inspection is critical, ensuring precision and adherence to exacting standards. To navigate this realm effectively, it’s crucial to understand the diverse spectrum of dimensional inspection equipment.

Let’s explore six main categories, each offering unique capabilities tailored to specific needs:

1. Hand Tools

These fundamental tools, including dial indicators, digital calipers, micrometers, and tape measures, offer versatility and portability for many dimensional testing applications.

Select hand tools based on the specific dimensional measurement needs, ensuring accuracy and precision in the inspection process. Consider factors like portability, ease of use, and affordability.

2. Pneumatic Gauging (Air Gauges)

Utilizing air restriction, these tools excel in non-contact inspection, particularly for workpieces with tolerances of 0.005″ or smaller. They offer rapid and high-precision measurements. When employing pneumatic gauging, consider the specified tolerances of the workpieces. Ensure proper tooling for applications requiring frequent dimensional measurements, optimizing the benefits of this fast and non-contact method.

3. Coordinate Measuring Machines (CMMs)

From portable arms to large, complex machines, CMMs employ contact probes to translate physical positions into digital coordinates. Varying in cost and accuracy, CMMs are versatile but may not suit delicate or elastic surfaces.

CMM for inspection

Assess the cost, accuracy or work envelope of CMMs depending on your demand for dimensional inspection tasks. Consider the compatibility of contact probes with the object’s surface characteristics.

4. Optical Systems

Optical systems, including desktop measuring microscopes and optical comparators, utilize light and optics to gauge dimensions based on object profiles within their field of view.

Choose optical systems based on the desired level of magnification, accuracy, and field of view. Consider the application of overlays or measuring reticles for comparing objects to standard shapes.

5. Light-Based Systems

Techniques of the non-contact inspection tool include structured light ou laser line triangulation that generates a three-dimensional point cloud, otherwise known as a profile. Ambient light and object movement during data acquisition can impact results.

Optimize structured light or laser line triangulation by minimizing object movement during data acquisition. Consider the impact of ambient light and explore the benefits of 3D smart sensors for comprehensive surface mapping.

6. Vision-Based Measuring Systems

Employing CCD, light, lenses, and analytical software, vision-based systems produce high-resolution images, automatically identifying edges and achieving micron-scale accuracies.

Leverage vision-based systems for applications demanding high accuracy and precision. Understand the analytical software’s capabilities in automatic edge detection, and ensure the system’s suitability for quality control requirements.

Choosing the Right Dimensional Inspection Equipment for Injection Molding

In injection molding, achieving precision hinges on choosing the right dimensional inspection equipment. Once the metrics for dimensional measurement are established, the selection process becomes pivotal.

As you begin the process, several factors demand careful consideration to ensure seamless integration and optimal results. Let’s delve into the key considerations guiding the selection of dimensional testing equipment:

choosing the right machine for dimensional inspection

Sensor Type

The prime directive in equipment selection is the sensor type. Opt for a sensor that ensures accurate measurements without altering the measured item’s integrity. The choice of sensor profoundly influences the reliability and precision of dimensional inspection.

Tolerance Requirements

Understanding the acceptable deviation from the desired outcome is crucial. Define tolerance requirements meticulously to align the dimensional testing equipment with the precision demanded by your specific application.

Portabilidade

Consider the portability of the equipment, especially if dimensional measurement needs extend beyond a fixed location. Portable solutions offer flexibility in adapting to diverse manufacturing environments.

Size and Shape of Objects

The dimensional characteristics of the objects to be measured play a pivotal role. Ensure that the chosen equipment accommodates the size and shape diversity inherent in your manufacturing processes.

Speed

The speed of the equipment often determines the efficiency of the inspection process. Evaluate the speed requirements of your application and select equipment that aligns with the desired pace of dimensional measurement.

Automatic or Manual Function

Assess whether your workflow demands automatic or manual functionality. The choice between the two hinges on the nature of your manufacturing process and the level of control you seek in the inspection phase.

Ease of Use

The usability of the equipment is a critical consideration. Opt for equipment that aligns with the skill set of your operators, ensuring seamless integration into your workflow.

Maintenance Requirements

It’s important to understand the maintenance demands of the equipment. Choose equipment with maintenance requirements that align with your operational capabilities, ensuring sustained performance.

Reliability and Durability

Reliability and durability are non-negotiable factors. Select equipment that withstands the rigors of industrial environments, ensuring consistent and accurate performance over time.

Budget

While considering all the above factors, aligning your choices with budgetary constraints is imperative. Striking a balance between functionality, precision, and cost is key to a successful investment.

Conclusão

In the world of injection molding, achieving precision is more than a technicality; it’s a strategic process. Choosing the right inspection equipment is crucial, considering sensor types, tolerance requirements, and portability. This journey requires a careful balance between speed and functionality, ease of use and maintenance, and reliability and budget constraints.

Manufacturers’ commitment to quality control and selecting the right equipment are keys to producing flawless finished products. Prototool, a reliable name in injection molding and CNC manufacturing, is your trusted partner in this pursuit of excellence.

With expertise in measurement data to 3D measuring, Prototool is prepared to enhance your manufacturing capabilities. Embrace precision, streamline processes, and step confidently into the future of injection molding with Prototool by your side.

The post Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/dimensional-inspection-in-injection-molding/feed/ 0
Dominar os buracos cegos e os buracos passantes no design https://prototool.com/pt/blind-holes-and-through-holes-in-design/ https://prototool.com/pt/blind-holes-and-through-holes-in-design/#comments Sun, 14 Jan 2024 10:36:28 +0000 https://prototool.com/?p=17210 Mastering Blind Holes and Through Holes in Design
Prototool

Explore os furos cegos e os furos passantes neste guia especificamente destinado a profissionais que pretendem melhorar as suas competências de conceção de peças.

The post Mastering Blind Holes and Through Holes in Design appeared first on Prototool written by Prototool.

]]>
Mastering Blind Holes and Through Holes in Design
Prototool

Managers, designers, and engineers in the manufacturing industry must understand blind holes and through holes for proper performance. This should enable them to perfect their profession.

To help you with that, this in-depth guide will unfold the strategic application of these design elements, providing valuable insights tailored to your needs as a professional or enthusiast. So keep reading to learn all about blind holes and through holes.

The Basics: Blind Holes vs. Through Holes

Blind holes, with a single open end, and through holes, traversing a part from end to end, are foundational in engineering. Distinguishable by symbols and manufacturing ease, the choice between them influences your design flexibility, alignmente complexity. Let’s explore these differences further below:

drawings for the blind holes turning and through holes turning
  • Symbol: No GD&T symbol for Blind Holes; Through Holes typically represented with a ⊗
  • Manufacturing Ease: Blind Holes are generally more challenging; Through Holes are relatively straightforward
  • Use Cases: Blind Holes are ideal for depth-specific scenarios; Through Holes are suitable for various applications
  • Complexity: Blind Holes can have a flat bottom with effort; Through Holes have a uniform cylindrical geometry
  • Customization: Blind Holes offer more design flexibility; Through Holes have standardized geometry
  • Alinhamento: Blind Holes require precise positioning; Through Holes are easier to align during assembly

Elements and Considerations for Blind Holes

Meticulous planning is indispensable in blind hole design, encompassing depth, diameter, material properties, and part orientation. The callout ⌀.098 ↧.200, for instance, specifies a hole with a diameter of 0.098 inches and a depth of 0.200 inches. Placement and orientation significantly impact stress distribution, machining tool access, and overall aesthetics.

Tolerances, Surface Finish, and Material Considerations

  • Achieving precise tolerances and suitable surface finishes is critical.
  • Material properties influence decisions regarding tolerances.
  • The intended application guides you toward achieving the required accuracy.

Cleaning and Drilling Techniques for Blind Holes

Efficient cleaning and drilling are crucial in blind hole manufacturing. Specialized tools, such as modified drill bits ou fresas de topo, offer customization options. Techniques like using air or high-pressure liquid coolant facilitate efficient chip extraction, contributing to the overall quality of the blind holes.

Cleaning Techniques

  • Hand-operated air guns or specialized handheld hole cleaners facilitate material removal.
  • Cleaning blind holes after drilling is advisable to remove leftover debris.

Drilling Techniques

  • Modified drill bits or end mills are employed for creating flat-bottomed blind holes.
  • Material removal of chips during drilling is crucial for preventing complications and ensuring component longevity.
blind holes in the screws

Design Considerations for Blind Holes

The significance of blind holes transcends their presence in a design; it lies in the delicate balance between form and function. Planning blind holes necessitates your meticulous attention to depth and diameter, aligning with expected capability and underlying prerequisites. Material properties demand different machining settings, influencing the design of blind holes for optimal functionality.

Placement and Orientation

  • Strategic placement and orientation significantly impact the usefulness and manufacturability of parts.
  • Even stress distribution, easy machining tool access, and overall aesthetics become critical considerations.
  • Alignment of blind holes during assembly ensures seamless integration into your larger design.

Tolerances, Surface Finish, and Material Considerations in Blind Hole Design

The achievement of precise tolerances and suitable acabamento da superfície is a nuanced process in blind hole design. Material properties, machinability, and the intended application influence decisions regarding tolerances. The intricate relationship between material properties, machining processes, and optimal surface finish guides you toward achieving the required accuracy in blind hole desenho.

Precision CNC Drilling with Blind Hole

Precision CNC drilling is pivotal in achieving manufacturing excellence, especially when dealing with blind holes. The drill depth clearance in blind holes is crucial to provide sufficient space for taps to effectively cut or machine the needed number of threads. The choice of tap type, material thickness, and the intended application influence the hole depth, requiring your thoughtful approach to maintain the integrity of the machining material.

Tapping Considerations in Blind Hole Design

  • Blind hole design extends beyond drilling; it includes tapping considerations, where the choice of tap type and hole depth become critical factors.
  • The left-hand machine tap, with its straight flute and peel point, is suitable for through holes where chips are ejected below the hole.
  • In contrast, blind holes demand a right-hand spiral flute tap where chips are removed above the hole to ensure clean cutting.

Through Hole Components

Long before the era of surface mount components, through-hole parts dominated PCB design. Despite the evolution in design preferences, through-hole components retain their significance for specific applications. Their standardized package sizes and robust mechanical attachment make them indispensable for connectors, switches, and other parts subjected to mechanical forces.

common through holes

So, while surface mount components dominate contemporary PCB design, through-hole components retain their significance, especially for robust mechanical attachments. Components conducting high power or generating substantial heat find optimal solutions in through-hole connections.

Here are some key considerations for through-hole processing for designs:

Power, Durability, and Heat

  • Through-hole components continue to play a vital role in PCB design, offering you unmatched durability, mechanical strength, and heat dissipation.
  • Parts requiring robust mechanical attachment, such as switches, connectorse fuses, find optimal solutions in through-hole connections.
  • Through holes are favored for components conducting high power or generating substantial heat, showcasing their adaptability in your modern designs.

PCB Assembly Challenges and Solutions

  • Through-hole parts present unique challenges in the PCB assembly phase.
  • Manual installation or automated insertion through pick-and-place machines becomes a critical decision.
  • Automated soldering through a wave soldering process demands additional considerations, such as masking surface mount components to prevent exposure to the wave.

Factors Influencing CNC Drilling Design

Optimizing CNC Drilling Process: Success in CNC drilling hinges on numerous factors. Exploring drill entry and exit surfaces, hole straightness, and overall part layout is crucial for achieving optimal results.

milling for the blind holes

Role of Designers: You play a pivotal role in the CNC drilling process. Your responsibilities extend to optimizing drill paths, considering material characteristics, and accounting for tooling constraints. Collaboration between you and machinists is key for a seamless manufacturing process.

Design Considerations

  • Drill Entry and Exit Surfaces: The significance of perpendicular entry and exit surfaces in CNC drilling cannot be overstated. Further elaborating on this aspect, you should give examples and case studies showing how it affects the outcome.
  • Handling Interrupted Cuts: Challenges arise when dealing with interrupted cuts during CNC drilling. Explaining these challenges and offering strategies to minimize deflection ensures a smoother drilling process, especially in complex designs.
  • Threaded Product Design: Designing products with threaded elements requires your careful consideration. Insights into incorporating chamfers and countersinks not only enhance functionality but also simplify the manufacturing process.
  • Intersecting Holes: The risks associated with intersecting drilled and reamed holes are nuanced. Presenting case studies and best practices guides you in avoiding potential pitfalls and ensuring the integrity of the final product.
  • Reaming Practices: Elaborating on good practices for reaming blind holes, providing guidance on extra drilled depth, and referencing a linked table for specifications enhances the precision of your CNC drilling designs.

Designing Holes for CNC Drilling

  • Blind Hole Considerations: Blind holes add complexity to CNC drilling. Discussing the bottom shape of blind holes, addressing the need for standard drill points, and exploring potential alternatives provide you with valuable insights.
  • Avoiding Deep Holes: Deep holes present challenges in CNC drilling, impacting tool stability and heat dissipation. Highlighting the consequences and showcasing alternative solutions, including specialized drills, guides you in making informed choices.
  • Size Considerations: Choosing appropriate hole sizes is a critical aspect of CNC drilling design. Discussing the impact of small holes on production efficiency and providing practical guidelines aids you in optimizing your designs.

Coordinating CNC Drilling Design

  • Coordinate Systems: Rectangular coordinates are preferred in hole location designation for CNC drilling. Emphasizing the advantages of this system, such as ease of machining, guides you in coordinating precise hole placements.
  • Single-Side Drilling: Designing parts with holes drilled from a single side streamlines tooling and reduces handling time. Exploring the benefits of this approach encourages efficient and cost-effective CNC drilling.
  • Standardization: Stressing the importance of standardizing hole sizes and screw threads is crucial for consistent manufacturing. Offering practical examples and industry recommendations supports you in creating designs aligned with best practices.

Calculations for Depth of Cut and Clearance

  • Depth of Cut Calculation: Breaking down the calculation process for determining the depth of cut for blind and through holes provides a practical tool for optimizing your CNC drilling designs.
  • Clearance Calculation: Explaining the formula for calculating clearance underscores its impact on hole quality, accuracy, and tool performance. This knowledge empowers you to fine-tune your designs for optimal results.

Still have questions? Contact our professional team at Prototool to assist you with understanding the entire blind or through hole drilling process.

The post Mastering Blind Holes and Through Holes in Design appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/blind-holes-and-through-holes-in-design/feed/ 1
As vantagens de utilizar a moldagem de plástico para paletes de plástico https://prototool.com/pt/the-benefits-of-using-plastic-molding-for-plastic-pallets/ Sun, 14 Jan 2024 09:47:07 +0000 https://prototool.com/?p=17198 The Benefits of Using Plastic Molding for Plastic Pallets
Prototool

Descubra a moldagem de plástico para paletes de plástico, que transformou o fabrico numa tecnologia avançada com características de design melhoradas.

The post The Benefits of Using Plastic Molding for Plastic Pallets appeared first on Prototool written by Prototool.

]]>
The Benefits of Using Plastic Molding for Plastic Pallets
Prototool

Machines used for plastic molding for plastic pallets have made their place in a revolutionary shift in the industrial landscape, replacing conventional wooden pallets with innovative plastic alternatives. But is it really helpful? Honestly, the emergence of advanced plastic pallet machines not only enhances production efficiency but also optimizes space utilization and promotes environmental friendliness.

Not sure how? Then you’re at the right place. In this article, we’ll explore that and more in detail. So, keep reading to learn all about the benefits and usage of plastic molding for plastic pallets.

plastic molding for plastic pallets

When Plastic Pallets Are Used?

Plastic pallets find extensive application across various industries, especially in supply chain logistics, due to their durability, versatility, and hygienic design. As the demand for injection-molded plastic pallets continues to rise, manufacturers are exploring efficient production methods, with plastic molding standing out as a key technology.

High Rigidity and Stable Clamping System

Plastic pallet injection molding stands out for its capability to achieve high rigidity. This is meticulously ensured through stress analysis, coupled with a stable clamping system employing four hydraulics.

This results in minimal mold deformation, precise accuracy, and sustained parallelism, effectively preventing any undesirable mold tilting. This not only guarantees the structural integrity of the plastic pallets but also contributes to their long-lasting durability.

Faster Mold Changing Speed

One of the standout features, as exemplified in machines like CLF’s TPII Injection Molding Machine, is the accelerated mold-changing process. This is a game-changer for manufacturers involved in small-volume, large-variety production scenarios.

The specifically designed structures facilitate quicker and smoother transitions between molds, minimizing downtime and maximizing overall production efficiency.

molde de injeção de plástico para paletes

Flexibility of Customization

The two-plate design incorporated in plastic molding for plastic pallet machines introduces a new level of flexibility for customization. Take, for instance, the TPII series, allowing mold exchange from the side.

This provides additional space and simplifies the process, making it an attractive investment for plastic pallet manufacturers aiming for distinctive designs. The flexibility offered in customization ensures that each plastic pallet can be tailored precisely to meet diverse industry needs.

A successful example is the collaboration of a prominent Taiwanese brand specializing in plastic pallets. By refining the cooling system design and strategically reducing product cycle time, there was a remarkable 40% decrease in overall cycle time.

This translated into an impressive feat – the production of an 11 kg plastic pallet in a mere 90 seconds. This success story underlines how advancements in plastic pallet injection molding can lead to significant improvements in production efficiency and output.

The Plastic Pallet Injection Molding Process

The plastic pallet manufacturing process through injection molding involves several crucial phases:

Precise Material Input

The journey begins with the introduction of plastic into the injection molding machine through a meticulously controlled hopper system. This step ensures precision in material input, laying the foundation for creating high-quality injection-molded plastic pallets.

Melting and Injection

The plastic material undergoes a transformative process involving heating bands and friction force, resulting in its transition to a liquid state. This molten plastic is then injected into a carefully crafted mold or cavity, taking on the precise shape required for the plastic pallet. Efficient cooling and hardening follow suit, facilitated by a state-of-the-art refrigeration system.

Types of Injection Systems

In the realm of plastic pallet manufacturing, two primary injection systems play a crucial role:

  • Low-Pressure System: This system involves injecting the mold cavity with a blend of plastic material and an inert gas. The outcome is a cellular core enveloped by rigid plastic. This method proves ideal for crafting plastic pallets with an optimal strength-to-weight ratio, ensuring both durability and cost-effectiveness in production.
  • High-Pressure Injection: Widely employed in the manufacture of high-density polyethylene (HDPE) ou polypropylene (PP) plastic pallets, the high-pressure injection system is a precise method known for delivering a high gloss finish to the final product. Notably, this eliminates the need for additional post-production treatments, streamlining the manufacturing process.
processo de moldagem de plástico para paletes de plástico

Thermoforming Plastic Pallets

The thermoforming process is another prominent injection-molded plastic pallet manufacturing process, particularly suitable for large-scale production. The process involves heating plastic to a pliable temperature, forming it over a mold, and allowing it to cool. The thermoforming process offers two main techniques: vacuum thermoforming and pressure thermoforming.

Blow Molding Plastic Pallets

Blow molding, focusing on forming hollow parts, is a distinctive process that produces plastic pallets with excellent resistance to low temperatures. It involves melting plastic material, forming a parison, clamping it into a mold, and inflating it with compressed air. Blow-molded plastic pallets are known for their durability and impact resistance.

Choosing the Right Manufacturing Process

Selecting the most suitable injection molded plastic pallet manufacturing process involves evaluating various factors:

  • Quality of the Plastic Pallet: Different processes yield varying qualities; choose based on the desired characteristics.
  • Considerações sobre os custos: Assess tooling, equipment, labor, and energy costs to align with budget constraints.
  • Production Capacity: Opt for a process that meets production demands and offers scalability.
  • Surface Finish and Design Tolerance: Consider the aesthetic and functional requirements of the injection molded plastic pallets design.

Tips for Designing Plastic Pallets Using Plastic Molding

Intricate and Customized Pallet Designs

Innovative design is a crucial benefit of plastic molding for the production of plastic pallets because this technology allows creating complex and customizable patterns that meet special needs. Plastic molding for plastic pallets enables precise shaping of size, structure, and features, allowing for versatility in handling different loads.

Whether it’s delicate items requiring special care or heavy loads demanding stability, plastic-molded pallets offer a tailored solution for diverse applications. This customization enhances efficiency in material handling practices across various industries.

Durable and Resistant to Wear and Tear

Injection molded plastic pallets manufactured through molding processes exhibit remarkable toughness, withstanding extensive wear and tear inherent in industries like warehouses and logistics. These pallets prove resilient in challenging conditions, such as exposure to moisture and chemicals, making them more durable than traditional wooden pallets. Their ability to endure heavy loads without deformation or damage ensures a longer lifespan, contributing to cost savings and sustainability.

Consistent, Precise, and Uniform Dimensions and Weight

The plastic molding process ensures a high level of consistency and precision in the dimensions and weight of injection molded plastic pallets. This uniformity is crucial in industries like food and beverage, pharmaceuticals, and retail, where efficient stacking, storage, and transportation rely on standardized pallet sizes.

Additionally, the overall quality, durability, and resistance to impact remain consistent across all pallets produced through molding, meeting the demands of rigorous conditions.

Cheaper Shipping Costs

Plastic-molded pallets possess a significant advantage in terms of weight, as they are lighter compared to their wooden counterparts. The reduced weight contributes to more efficient transportation, leading to cost savings in shipping.

The lighter pallets are more convenient to maneuver thus decreasing the impact on workers and lessening injuries tied with heavy lifting. Moreover, the absence of splintering eliminates the risk of product damage during transit, further enhancing the cost-effectiveness of plastic-molded pallets.

Make the Pallets Non-Porous and Easy to Clean

Plastic-molded pallets, by design, are non-porous, lacking tiny gaps that might absorb liquids, odors, or contaminants. This property ensures that they are suitable for use in industries, where hygiene is essential as food and pharmaceutical sector.

The non-porous nature of these pallets prevents propagation of bacteria, molds or other pathogens, ensuring a clean and safe work environment. Additionally, the smooth and seamless surfaces simplify the cleaning process, allowing for easy removal of dirt, dust, or spills through various cleaning methods.

paletes acabadas por processo de moldagem por injeção de plástico

A Comprehensive Guide to Making a Plastic Pallet Mold in 5 Easy Steps

Step 1: Product Design of Plastic Pallets

In the initial phase, thoroughly understand the specific requirements of the plastic pallet. Consider factors such as intended use, load-bearing capacity, and industry standards. Ensure that the finished product meets all standards and specifications by addressing potential problems with molding procedures.

Step 2: Plastic Pallet Mold Gate Design

When designing the plastic pallet mold gate, use CAE tools to analyze the multi-point gate design for potential defects. Optimize the gate design to avoid excess weight issues during transport. Additionally, consider using integral hot runners to evaluate their effectiveness in reducing material leakage and ensuring an efficient material flow during molding.

Step 3: Designs for Plastic Pallet Mould Inserts and Inserts Waterway

Focus on designing molds with high-precision inserts for both moving and fixed mold parts. Utilize CAD software for detailed and precise insert designs. Ensure even material flow through each section by designing an efficient waterway system within the inserts. Optimize the cooling system to prevent heat-related shifting during the molding process.

Step 4: The Ejection Design of the Pallet Mold

Incorporate a large number of pinos ejectores into the design, strategically placing them based on the product structure. Choose ejection positions with good structural support for smooth and efficient ejection. Select high-quality pin accessories that fit smoothly with the insert, and connect enough rods from the plastic machine to provide even force and minimize deformation during the ejection process.

Step 5: Selection of Pallet Mold Steel

Evaluate dureza do aço, durezae custos de processamento com base nos requisitos do molde. Verificar a correção do aço encomendado antes do fabrico para garantir a integridade estrutural. Antes do fabrico, certifique-se de que o aço selecionado cumpre os critérios para um fabrico bem sucedido do molde.

Conclusão

À medida que a procura de paletes de plástico moldadas por injeção cresce, os fabricantes enfrentam o desafio de otimizar a eficiência e a sustentabilidade da produção. A moldagem de plástico, especialmente a moldagem por injeção e o processo de termoformagem, surge como uma solução fundamental, oferecendo um equilíbrio entre a relação custo-eficácia, a personalização e as considerações ambientais.

Nota: Para serviços especializados de fabrico CNC e moldagem por injeção, Prototool destaca-se como líder do sector, fornecendo soluções completas para a produção de paletes de plástico.

The post The Benefits of Using Plastic Molding for Plastic Pallets appeared first on Prototool written by Prototool.

]]>
Conceção de moldes de engrenagens para engrenagens de plástico https://prototool.com/pt/gear-mold-design-for-plastic-gears/ https://prototool.com/pt/gear-mold-design-for-plastic-gears/#respond Tue, 09 Jan 2024 07:26:18 +0000 https://prototool.com/?p=17162 Gear Mold Design for Plastic Gears
Prototool

Descubra as particularidades da conceção de moldes de engrenagens para engrenagens de plástico e as suas principais características e técnicas de fabrico especializadas.

The post Gear Mold Design for Plastic Gears appeared first on Prototool written by Prototool.

]]>
Gear Mold Design for Plastic Gears
Prototool

Gear mold design, especially for plastic gears, differs significantly from traditional mold designs. Key parameters such as tooth thickness (the arc length between two sides of a gear tooth), module (a parameter measuring gear size), and pressure angle (the acute angle between the direction of force and direction of motion, excluding friction) require adjustments based on empirical data.

Unlike other processes, gear molds cannot be directly processed based on shrinkage rates. Professional gear and gearbox manufacturers, leveraging long-term experience and collaboration with computer software companies, have developed specialized software for calculating gear mold cavity parameters. This software can directly generate gear parameters and profiles, aiding in gear modification and enhancing tooth accuracy. Let’s delve into the intricacies of plastic gear mold design.

Plastic Gear Product Display

Cavity Design for Plastic Gear Molds

Designing the cavity for a plastic gear mold has always been a technical challenge in the mold industry, primarily due to two reasons:

1. Precision in Plastic Shrinkage Rates:

During the molding process of plastic gears, plastic granules transform into a molten state under high heat and then cool down to form solid plastic gears. The shrinkage rate of plastic during this process is a range value, making it difficult to determine precise shrinkage rates.

2. Non-linear Shrinkage Calculation for Mold Cavities:

For involute small module plastic gear molds, the mold cavity essentially represents an imaginary gear. This imaginary gear differs from both shifted gears and internal gears. After shrinkage, it becomes the desired plastic gear. The shrinkage on the involute tooth profile of this imaginary gear is not uniform like the isotropic shrinkage seen in general plastic parts. On the gear plane, the shrinkage in the x and y directions is unequal, leading to non-linear shrinkage, as shown in Figure 1. This non-linearity significantly increases the complexity of designing involute plastic gear mold cavities.

Comparison of Theoretical Tooth Profiles of Plastic Gears and Mold Cavity Tooth Profiles

The right way to design a gear mold cavity

Facing these technical challenges, using the isotropic shrinkage method for designing mold cavities often yields suboptimal results. Based on years of practical experience and precise estimation of plastic shrinkage rates, we recommend using the variable module method for theoretical design of gear mold cavities, followed by tooth profile correction to ensure accuracy and rationality of the mold cavity.

The variable module method assumes that during various processing stages, the base circle diameter, pitch circle diameter, addendum circle diameter, and dedendum circle diameter of a gear remain consistent, scaling up or down proportionally, similar to the radial dimension changes in simple sleeve-like parts. For a gear’s pitch circle, as determined by the formula d=mz, it is dependent only on the module m and the number of teeth z.

Since the number of teeth on a specific gear is constant, we can consider the change in the pitch circle diameter during processing as a change in the module. This principle implies that the space encompassed by the plastic gear mold cavity is an imaginary gear with constant number of teeth and pressure angle, with its grooves forming the cavity’s tooth profile.

We can calculate the module of this imaginary gear using a proportional method. The formula for this calculation is m’ = (1 + η%)m. In this formula, m’ represents the module of the mold cavity tooth profile, m is the theoretical module of the designed gear, and η% is the plastic’s shrinkage rate. By substituting the module m’ into the corresponding gear calculation formula, the resulting gear represents the imaginary gear of the mold cavity. Practice has shown that the variable module method effectively addresses the challenge of non-linear shrinkage in involute tooth profiles, as demonstrated by the mold cavity product shown in Figure 2.

Gear mold cavity

Gate Design for Plastic Gear Molds

In the process of molding plastic gears, the location of the gate significantly impacts the precision of the gears, especially their radial runout. The distribution form of the gate also crucially affects the overall mechanical properties of the plastic gears. When designing gates for plastic gear molds, if the gear product allows, it is recommended to use a three-point gating system. Ideally, these three points should be located on the same circular arc and evenly distributed, as shown in Figure 3.

Comparison of three-point balanced gating system and one-point balanced gating system

Using a three-point balanced gating system, the plastic melt flows radially from the gates, converging at the flow fronts to form three weld lines. At these weld lines, the orientation of fibers tends to be parallel to the flow front. In gears, this results in fibers being radially distributed at the weld lines, while being randomly distributed in other parts of the gear. This creates areas of low shrinkage along the weld lines. The difference in fiber orientation between the weld lines and the rest of the gear is less pronounced than in gears with a single gate, leading to higher gear precision. Figure 4 shows a schematic comparison of fiber orientation and filling patterns when using a single eccentric gate versus a three-point evenly distributed gate.

Comparison Diagram of Fiber Flow Directions in One-Point vs. Three-Point Gating Systems

Venting Design for Plastic Gear Molds

Venting is a crucial aspect to consider in plastic mold design. For plastic gear molds, the design of venting on the tooth surfaces is particularly important. We machine most surfaces of gear molds with a grinding machine. This process ensures a good surface-to-surface fit. However, it tends to result in insufficient filling at the last areas during the injection process. To eliminate trapped air, it is necessary to create venting grooves on the tooth surfaces. Generally, the design of these venting grooves on the tooth surfaces is as shown in Figure 5.

gear venting system design

Structural Design of Plastic Gear Molds

Given that plastic gear injection molding often uses point gates, the mold structure commonly adopts a three-plate design. Figure 6 shows the design diagram of a gear mold, and Figure 7 displays the actual gear mold. The working principle of the gear mold is as follows:

Structure of the designed gear mold
gear mold cavity and core

After completing the injection molding action, the movable part of the mold begins to open under the drive of the injection molding machine:

  1. First Stage of Parting: Due to the action of spring 1, the stripper plate begins to part from Plate A. The sprue puller pin action fixes the main channel on the stripper plate and causes the gate to break away from the product.
  2. Second Stage of Parting: After the mold opens 95mm, under the action of the tie-bar assembly, the stripper plate begins to separate from the faceplate, releasing the main channel from the sprue bush.
  3. Third Stage of Parting: As the mold continues to open, under the action of the tie-bar assembly, Plate A begins to part from Plate B. After opening to 90mm, the ejector plate starts to move, ejecting the product. During this process, the guide posts of the ejector plate are used to enhance the balance of ejection. The ejector plate resets under the action of spring 2. This completes the entire mold opening and ejection action.

Manufacturing of Plastic Gear Molds

In the process of molding plastic gears, the gear mold is the key equipment for shaping the plastic gears and ensuring their precision. The plastic gear mold can be divided into two main parts: the gear cavity and the mold frame. The gear cavity, also known as the gear ring, is the most critical and precision-demanding part of the entire gear mold manufacturing process.

1. Gear Cavity Machining

The machining of the gear cavity is key in the manufacturing of plastic gear molds. The molding of plastic gears is a form of ‘replica’ processing. In this process, the cavity’s tooth profile is a deformed template of the gear tooth shape. Therefore, it’s essential to strictly control the dimensional accuracy and surface roughness of the cavity. It is essential to avoid defects such as burrs, eccentricity, and surface scratches. Therefore, a strict gear cavity machining process must be established to ensure the precision of the cavity production.

There are mainly four methods for machining the gear cavity: wire cutting, electrical discharge machining (EDM), electroforming, and beryllium copper alloy casting. Each of these methods has its advantages and disadvantages for machining gear cavities. Manufacturers commonly use wire cutting for involute straight cylindrical gears and generally prefer EDM for helical gears. Additionally, they can machine electrodes used for EDM of gear cavities using wire cutting. For helical gear electrodes with a small helix angle (β≤6°), wire cutting is still applicable.

2. Mold Frame Machining

The mold frame, also known as the mold base, is an auxiliary forming part of the gear mold. The process of machining the mold frame is similar to that of common plastic injection molds. Therefore, this article will not elaborate on it. Figure 8 shows the actual image of the gear mold frame machining.

Various plastic gears

The post Gear Mold Design for Plastic Gears appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/gear-mold-design-for-plastic-gears/feed/ 0
Etapas gerais na conceção de dispositivos médicos e no desenvolvimento de produtos https://prototool.com/pt/general-steps-in-medical-device-design-and-product-development/ https://prototool.com/pt/general-steps-in-medical-device-design-and-product-development/#respond Tue, 09 Jan 2024 02:17:09 +0000 https://prototool.com/?p=17152 General Steps In Medical Device Design And Product Development
Prototool

Descubra as principais etapas da conceção de dispositivos médicos e do desenvolvimento de produtos, garantindo a qualidade e a conformidade com regulamentos rigorosos.

The post General Steps In Medical Device Design And Product Development appeared first on Prototool written by Prototool.

]]>
General Steps In Medical Device Design And Product Development
Prototool

A professional industrial design company specializing in medical devices will adhere to stringent quality control regulations in medical device design and product development processes. This is crucial for ensuring the efficiency and quality of medical product design and development. Here, we share the common steps in medical device product design and development.

Medical Device Design Draft

1. Project Initiation and Approval

Normally when an industrial design company receives the medical product design requirements of a client, it issues a project task document announcing that henceforward the start of this project means work into designing and development began.

Medical device product development and design case

2. Planning for Medical Device Design and Development

After initiating the project, designers create a corresponding elite team based on specific design requirements, with each member responsible for their respective task. Once the team has completed designing and developing a concept, they propose different concepts such as the function of the medical device meaning what it does appearance of structural integrity , materials used in its manufacturing process

3. Key Inputs in Design and Development

The product’s functions, features, safety requirements and risk management regulations are defined based on findings of market research. This involves considering various aspects: those of the product’s principal application, characteristics and benefits , potential in service to satisfy such needs as personnel workload equipment air temperature safety precautions stability of position time span available raw materials etc. These aspects are critically reviewed, confirmed and documented with rigorous precision before necessary documentation is circulated.

4. Outputs in Design and Development

The design output should first meet the design input requirements. It must specify the required raw materials, components, technical standards, acceptance rules, product execution standards, engineering drawings, component details, production process flow, machining process, production line equipment, prototypes, testing procedures and methods, packaging, and packaging labels in detail. Additionally, one should meticulously maintain records of the design and development process.

Medical Device Design and Development Case

5. Review of Design and Development Plans

One should systematically review design and development plans to ensure their applicability and effectiveness. This process verifies that the outcomes meet the overall objectives. The purpose is to evaluate whether the results of the design and development phases meet the specified requirements of the design plan and comply with relevant laws and regulations. This step identifies any shortcomings and proposes solutions to prevent product non-conformity at an early stage.

Medical Device Design and Development Case02

6. Verification of Design and Development

To ensure the outputs of medical device product design and development meet the specified inputs, one should conduct verification according to the planned allocation. Verification methods include: using different approaches to design and verify against the design data or requirements; comparing with similar designs; prototyping for testing and demonstration; self-testing of prototypes; third-party testing; and document review.

7. Validation of Design and Development

To ensure that the product meets the required usability standards or the known anticipated primary use, validation of the medical device product’s design and development should be conducted according to the design plan’s allocation. This includes clinical evaluation, simulation and comparison reviews, and feature evaluations.

Additionally, one should conduct design changes and change reviews if necessary. It’s essential to clearly state the reasons, requirements, and standards for changes, and these changes must also undergo review.

Medical Device Design and Development Case03

The post General Steps In Medical Device Design And Product Development appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/general-steps-in-medical-device-design-and-product-development/feed/ 0
Criar uma folga estratégica na conceção de moldes https://prototool.com/pt/creating-strategic-clearance-in-mold-design/ https://prototool.com/pt/creating-strategic-clearance-in-mold-design/#respond Mon, 08 Jan 2024 09:16:15 +0000 https://prototool.com/?p=17139 Creating Strategic Clearance in Mold Design
Prototool

Explore os passos essenciais para a folga estratégica na conceção de moldes de plástico, assegurando uma maquinação eficiente, montagem e longevidade dos moldes.

The post Creating Strategic Clearance in Mold Design appeared first on Prototool written by Prototool.

]]>
Creating Strategic Clearance in Mold Design
Prototool

In plastic mold design, creating strategic clearance is crucial for the seamless operation and assembly of various components. This process ensures that during the design phase, clearances are accurately accounted for, facilitating efficient machining and assembly by the moldmaker. But what are the specific components in plastic mold design that require such clearance?

Overview of Creating Strategic Clearance

Flange and Sprue Bushing

In mold design, the flange should have a unilateral clearance of 0.1mm with the top clamp plate. The sprue bushing should have a unilateral clearance of 0.5mm with its mounting plate and the mold base, as shown in the diagram. Additionally, a 20mm clearance is reserved for the sprue bushing inside the mold cavity for sealing purposes.

Flange and Sprue Bushing Strategic Clearance

Support Pillars and Ejector Components

The support pillar, ejector blocks, and spring holes follow these clearance standards: For support pillars with a diameter under 50mm, a unilateral clearance of 2mm is required. For those over 50mm in diameter, a 3mm clearance is needed. Ejector pin through-holes on the B-plate and ejector retainer plate require a unilateral clearance of 0.5mm. The spring holes on the B-plate should have a clearance of 0.5-1mm.

Support Pillars and Ejector Components Strategic Clearance

Slider Angle Pins and Slide Locking Blocks

The slider angle pin should have a unilateral clearance of 0.5mm with its corresponding hole. If the pin extends into the B-plate, a 2mm clearance is necessary. The slide locking block should maintain a sliding fit with the B-plate, with a unilateral clearance of 0.5mm. Limit screws should have a 1mm clearance on both sides, and a 2mm clearance at the top with the slide locking block.

Slider Angle Pins and Slide Locking Blocks Strategic Clearance
Screws for position limitation Strategic Clearance

Angled Ejectors and Mold Plates

Angled ejectors typically use wire-cut round holes or milling for clearance with the B-plate. The guide blocks for these ejectors, often made of bronze, use a C-angle with rounded corners for clearance with the B-plate. This method facilitates CNC machining.

Angled Ejectors and Mold Plates Strategic Clearance
Angled Ejectors and Mold Plates Strategic Clearance in mold design

Mold Plate and Mold Base Clearance

The mold plate screws should have a unilateral clearance of 0.5mm with the mold base. The same clearance applies to the core locking screws with the mold core, and the small tie-bar sleeves with the mold plate. When designing inserts, ensure a unilateral clearance of 2mm with rounded corners for ease of CNC machining and assembly.

Mold Plate and Mold Base Clearance Strategic Clearance in mold design

Conclusão

Strategic clearance in mold design is a critical aspect that ensures the smooth operation and longevity of the mold. Proper clearance prevents component wear and facilitates easier machining and assembly, contributing to the overall efficiency and quality of the mold-making process.

The post Creating Strategic Clearance in Mold Design appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/creating-strategic-clearance-in-mold-design/feed/ 0
Factores que afectam o custo ou o preço do protótipo https://prototool.com/pt/prototype-cost-prototype-pricing/ https://prototool.com/pt/prototype-cost-prototype-pricing/#respond Mon, 08 Jan 2024 07:32:09 +0000 https://prototool.com/?p=17132 Factors Affecting the Prototype Cost or Pricing
Prototool

Descubra os principais factores que afectam os custos dos protótipos rápidos. Um guia conciso para compreender e estimar os preços dos protótipos rápidos.

The post Factors Affecting the Prototype Cost or Pricing appeared first on Prototool written by Prototool.

]]>
Factors Affecting the Prototype Cost or Pricing
Prototool

Recently, a client emailed us at Prototool, questioning the varying prices of similar products we’ve collaborated on over the years. They wondered if our pricing was arbitrary. Prototool has been in the prototype industry for 12 years, adhering to a policy of integrity and honest pricing. The pricing of prototypes, being custom products, lacks a standard reference. Most factories base their quotes on the perceived difficulty of the manufacturing process, which can be quite subjective.

However, Prototool operates differently. We gather relevant personnel to discuss the process, labor, and analyze costs, risks, and delivery times in detail after organizing the drawings. This approach ensures more accurate pricing. Let’s discuss the factors that influence the cost of a prototype.

1. Choice of Prototyping Method

In the current scenario, common prototyping methods include CNC machining, 3D printing, and small-batch replication. The choice of material often dictates the prototyping method. For materials with higher requirements, CNC machining is preferred despite its higher cost, as it guarantees material stability. For quantities over ten pieces with material requirements similar to ABS, small-batch replication is chosen. This involves creating one or two prototypes with simple silicone molds, significantly saving time and cost compared to CNC machining. 3D printing is less expensive, but the material strength and temperature resistance are much lower than CNC and replication prototypes.

Prototypes are manufactured using CNC machines

2. Materials Used in the Prototype

Sometimes, choosing different materials can lead to a significant difference in pricing. The reasons are twofold. First, the cost of different materials varies greatly. Special materials like PEEK and Teflon are much more expensive than common materials like ABS, PC, and PMMA. Second, the processing time for different materials varies. Harder materials like aluminum alloy, stainless steel, and POM take longer to process compared to plastics like ABS and PC, as the milling speed is slower and more time-consuming.

The cost of prototypes varies from material to material.

3. Differences in Surface Treatment

For basic or internal components, the process usually involves deburring or rough sanding after machining. However, when advanced finishes like painting, electroplating, or transparency are required, it necessitates meticulous sanding by skilled workers. This increases the labor cost significantly, naturally leading to a higher price for these specialized surface treatments.

4. Risk Factors in Prototype Manufacturing

Many are aware that machining magnesium alloys is expensive. This is due to the high reactivity of magnesium alloy, which has a low ignition point, making it prone to catching fire if not handled carefully during processing. This risk can lead to considerable losses. Similarly, materials with high reactivity or designs with thin structural walls have a higher scrap rate. Therefore, prototype pricing specialists consider these risk factors and adjust their quotes accordingly.

5. Rush Orders and Capacity Saturation

Often, there are situations where a prototype is needed urgently, requiring a turnaround time of two to three days instead of the normal five-day cycle. In such cases, each prototype manufacturer must assess their current order saturation before committing. Prioritizing a rush order inevitably impacts the progress of other orders and may require overtime work from the staff. Therefore, the pricing specialists adjust their quotes based on the current order load and the feasibility of completing other orders smoothly, leading to price fluctuations for rush orders.

CNC machined prototypes

The post Factors Affecting the Prototype Cost or Pricing appeared first on Prototool written by Prototool.

]]>
https://prototool.com/pt/prototype-cost-prototype-pricing/feed/ 0
Revestimento em pó vs Pintura no tratamento de superfícies de protótipos https://prototool.com/pt/powder-coating-vs-painting-in-prototype/ Mon, 08 Jan 2024 03:42:51 +0000 https://prototool.com/?p=17124 Powder Coating vs Painting in Prototype Surface Treatment
Prototool

Descubra as principais diferenças entre o revestimento em pó e a pintura em protótipo, incluindo os métodos de aplicação, a relação custo-eficácia, etc.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>
Powder Coating vs Painting in Prototype Surface Treatment
Prototool

O revestimento por pulverização engloba a pintura por pulverização, a lubrificação por pulverização e o zinco por pulverização. Neste contexto, a pintura por pulverização e a lubrificação por pulverização são consideradas o mesmo processo e serão designadas coletivamente por pintura por pulverização. O revestimento em pó, também conhecido como pulverização de plástico, é um processo diferente e será referido como revestimento em pó neste artigo. A pulverização de zinco, frequentemente utilizada para grandes estruturas arquitectónicas de aço ou peças metálicas de elevada exigência, não será o foco desta discussão. Vamos falar hoje sobre o revestimento a pó versus pintura em protótipo.

Entre todos os tipos de tratamento de superfície mencionados, a pintura por pulverização é, sem dúvida, o mais simples. Consiste em deitar tinta num dispositivo especializado em pintura por pulverização e utilizar uma pistola de pulverização para revestir a peça de trabalho. A peça é depois deixada a secar naturalmente ou é seca com calor elevado. Trata-se, portanto, de um processo físico relativamente simples.

O equipamento e as técnicas utilizadas nestes processos variam, o que conduz a diferenças de textura e de custo.

Diferenças entre a pintura por pulverização e o revestimento a pó

Vamos descrever brevemente as suas principais diferenças:

Pintura por pulverização vs. revestimento a pó: A pintura por pulverização é uma técnica de dispersão de tinta líquida, normalmente designada por tinta, em partículas finas de pó que são sopradas sobre a superfície de um objeto utilizando ar comprimido. O revestimento a pó, por outro lado, utiliza ar comprimido para pulverizar pó num campo eletrostático de alta tensão. As partículas de pó são então atraídas para a superfície do objeto através de um campo elétrico.

O termo correto para revestimento em pó: O processo de revestimento a pó é designado por "revestimento eletrostático a pó". Não é o tipo de tarefa que pode ser realizada utilizando apenas uma pistola de pintura comum. O equipamento para o revestimento a pó inclui um barril de fornecimento de pó que utiliza ar comprimido, um gerador eletrostático de alta tensão e uma pistola de pulverização eletrostática. Os pós para exterior e interior são os pós plásticos utilizados neste processo. O principal tipo é o pó para exterior feito de resina epóxi, que, em termos de composição, difere fundamentalmente da tinta.

Processo de revestimento a pó para protótipos

Análise das características para comparar o revestimento a pó com a pintura

Processo de revestimento em pó

1. Sem solventes nos revestimentos em pó:

Os revestimentos em pó não contêm quaisquer solventes e são 100% sólidos. Este aspeto resolve os problemas de poluição causados pelos solventes durante o fabrico, o transporte, o armazenamento e a aplicação. Melhora as condições de trabalho dos operadores e beneficia a sua saúde.

2. Processo de revestimento simplificado:

O processo de revestimento em pó envolve apenas três passos: pulverização do pó, cura e arrefecimento, permitindo a formação de uma película num só passo. Esta simplicidade agiliza significativamente o processo de revestimento, encurta o ciclo de produção e permite a saída do produto no mesmo dia. No revestimento eletrostático de pó, a integração de máquinas de revestimento automáticas e de um sistema de reciclagem pode levar a uma produção automatizada, poupando energia e recursos e aumentando a produtividade.

3. Elevada taxa de utilização de revestimentos em pó:

Os revestimentos em pó podem ser aplicados diretamente na superfície do objeto e curados por cozedura para formar um revestimento. O pó não utilizado pode ser recolhido e reutilizado, com uma taxa de utilização superior a 95%.

4. Revestimentos em pó duradouros e de elevado desempenho:

Os revestimentos em pó podem ser feitos a partir de resinas insolúveis à temperatura ambiente ou de resinas de elevado peso molecular que não podem ser liquefeitas. Isto resulta em revestimentos de alto desempenho com várias funcionalidades. A ausência de solventes no processo de preparação ou de formação da película evita a formação de furos no revestimento, tornando-o mais denso.

5. Possibilidade de revestimento único:

Uma única aplicação de revestimento em pó pode atingir uma espessura de película de 50 a 300 μm sem os problemas de gotejamento ou flacidez comuns às aplicações de tintas espessas. Também evita os furos de solvente e os defeitos associados aos revestimentos de película espessa e oferece uma elevada cobertura dos bordos. Em contrapartida, a tinta requer normalmente várias aplicações para obter uma espessura ou qualidade semelhantes.

6. Desafios na mudança de cor:

Ao contrário da tinta, que pode ser misturada no local, a cor dos revestimentos em pó é pré-determinada na fábrica. Mudar a cor requer a alteração da fórmula do revestimento em pó, o que torna as mudanças rápidas de cor um desafio. A pulverização eletrostática requer uma limpeza minuciosa da pistola de pulverização, do alimentador de pó, da câmara de pulverização, dos tubos de transporte e do sistema de reciclagem durante as mudanças de cor, especialmente quando se alterna entre cores escuras e claras.

7. Dificuldade na obtenção de películas finas:

Devido aos princípios da pulverização eletrostática, a espessura dos revestimentos em pó é geralmente superior a 50 μm. Mesmo com revestimentos em pó de alta qualidade e condições óptimas, conseguir uma espessura de película inferior a 40 μm é um desafio.

8. Suavidade superficial ligeiramente inferior:

Os revestimentos em pó, que dependem da fusão induzida pelo calor e do nivelamento do objeto, têm uma viscosidade de fusão mais elevada. Este facto pode resultar numa textura ligeiramente alaranjada, tornando o revestimento menos suave do que a tinta.

9. Certas limitações:

As limitações do processo de revestimento a pó situam-se principalmente em três domínios: Em primeiro lugar, uma vez que a temperatura de cura dos revestimentos em pó é geralmente superior a 160°C, este facto restringe a sua utilização em produtos sensíveis ao calor, como os plásticos. Em segundo lugar, como a maioria dos processos de revestimento a pó utiliza pulverização eletrostática, o objeto tem de ser condutor. Os objectos não metálicos requerem um tratamento condutor e têm de suportar temperaturas superiores a 160°C.

Caixa de protótipo de revestimento em pó

Processo de pintura por pulverização

1. Grande variedade de tintas:

A China classifica as tintas em dezassete tipos principais, com milhares de variedades disponíveis, e estão continuamente a surgir novos tipos. Os utilizadores podem selecionar a tinta mais adequada com base no desempenho do produto, na utilização e em factores ambientais para obterem resultados de revestimento óptimos.

2. Técnicas globais de processo:

A pintura por pulverização adapta-se bem a vários métodos, incluindo pintura com pincel, revestimento por imersão, revestimento em fluxo, revestimento com rolo, revestimento com faca, pintura por pulverização a ar, pintura por pulverização sem ar de alta pressão, pintura electroforética e pintura por pulverização eletrostática. Entre estes, a pintura com pincel, a pintura por pulverização de ar e a pintura electroforética são amplamente utilizadas.

3. Menor investimento inicial em equipamento:

O equipamento de pintura por pulverização inclui principalmente pistolas de pulverização, compressores de ar, separadores de óleo-água e as mangueiras de ar necessárias. Em comparação com o investimento substancial necessário para o equipamento de revestimento em pó, a pintura por pulverização envolve menos capital inicial, custos de produção mais baixos e uma recuperação de capital mais rápida.

4. Processo de pré-tratamento simplificado:

Na pintura por pulverização, graças às excelentes propriedades de prevenção da ferrugem dos primários e à sua boa adesão tanto aos substratos como às camadas de acabamento, a resistência à corrosão do revestimento é significativamente melhorada, garantindo a longevidade do revestimento. Apenas são necessários tratamentos de desengorduramento e despoeiramento antes da aplicação do primário, simplificando assim o processo de pré-tratamento, poupando custos de produção e melhorando a eficiência.

5. Ciclo de produção mais longo e custo global mais elevado:

A pintura por pulverização envolve mais passos do que o revestimento a pó. Durante a aplicação, requer a utilização de primários, betumes, diluentes e revestimentos superiores, sendo necessário um tempo de secagem entre cada passo. Algumas tintas também requerem secagem a quente. Por conseguinte, tendo em conta o consumo de materiais, a utilização de energia e os custos de mão de obra, o custo global da pintura por pulverização é superior ao do revestimento a pó e o ciclo de produção é mais longo.

6. Desempenho ambiental deficiente:

Nocivo para a saúde dos operadores: As tintas contêm solventes orgânicos que podem volatilizar-se no ar durante a aplicação e a cura. A pintura por pulverização de ar produz uma quantidade significativa de excesso de pulverização e de névoa de tinta, que é prejudicial para a saúde, exigindo a utilização de máscaras de proteção pelos operadores.

7. Maior risco de incêndio em comparação com o revestimento em pó:

A pintura por pulverização representa um maior risco de incêndio do que o revestimento em pó por várias razões: Em primeiro lugar, os solventes orgânicos da tinta são altamente voláteis e podem inflamar-se ou explodir facilmente em contacto com chamas abertas ou faíscas. Os revestimentos em pó não contêm solventes orgânicos, apresentando assim um risco menor. Em segundo lugar, o ponto de inflamação, o ponto de ignição e a energia de ignição da tinta são inferiores aos dos revestimentos em pó, o que leva a uma propagação mais rápida da combustão. Por último, o equipamento de ventilação, o ambiente de trabalho e os procedimentos operacionais na pintura por pulverização de ar são geralmente menos avançados do que no revestimento em pó, aumentando o risco de incêndio.

É importante notar que, embora a pintura por pulverização tenha um risco de incêndio mais elevado do que o revestimento em pó, na rara eventualidade de uma explosão, a intensidade e o poder destrutivo de uma explosão de revestimento em pó podem ser muito superiores aos das tintas líquidas.

Estojo de protótipo de pintura

Revestimento em pó vs Pintura Comparação geral

Impacto ambiental: O revestimento a pó é frequentemente considerado menos prejudicial para o ambiente do que a pintura por pulverização normal. Emite menores quantidades de compostos orgânicos voláteis (COV) que são prejudiciais para a saúde humana e para o ambiente.

Durabilidade e acabamento: Geralmente, a pintura a pó dá um acabamento mais espesso e mais uniforme do que a pintura por pulverização. É mais resistente a lascas, riscos e outros tipos de desgaste, o que o torna ótimo para artigos que requerem um acabamento rígido.

Eficiência da aplicação: O revestimento em pó é mais eficiente no processo de aplicação. O pó extra pode ser recuperado e reutilizado, reduzindo assim o desperdício. No entanto, a pintura por pulverização tende a resultar em excesso de pulverização e requer mais precisão para um acabamento uniforme.

Processo de cura: O processo de cura do revestimento em pó é mais rápido em comparação com a pintura por pulverização tradicional. O aquecimento permite que os artigos revestidos por cura fiquem prontos muito mais rapidamente.

Considerações sobre os custos: Embora o custo inicial de instalação do revestimento em pó possa ser mais elevado devido ao equipamento necessário, a longo prazo será efetivamente mais barato devido à sua eficiência, vida útil e menor desperdício.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>