Mecanizado CNC | Prototool https://prototool.com/es/category/cnc-machining/ Sitio web oficial de Prototool Sun, 14 Jan 2024 10:38:20 +0000 es por hora 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Mecanizado CNC | Prototool https://prototool.com/es/category/cnc-machining/ 32 32 Cómo gestionan los defectos de mecanizado las principales fábricas de mecanizado CNC https://prototool.com/es/cnc-machining-defects/ https://prototool.com/es/cnc-machining-defects/#comments Mon, 08 Jan 2024 02:15:24 +0000 https://prototool.com/?p=17116 How Top CNC Machining Factories Handle CNC Machining Defects
Prototool

Este artículo muestra cómo los mejores proveedores abordan los defectos de mecanizado CNC, revelando las formas en que sus piezas de alta calidad se someten a superar los desafíos.

The post How Top CNC Machining Factories Handle CNC Machining Defects appeared first on Prototool written by Prototool.

]]>
How Top CNC Machining Factories Handle CNC Machining Defects
Prototool

Top CNC machining factories achieve flawless workpieces because they have encountered numerous CNC machining defects. These experiences have taught operators how to better shape the desired forms. Understanding CNC machining defects is not entirely negative; it can significantly aid future machining operations.

Prototool, a leading CNC machining factory in China, has summarized the causes and solutions for CNC machining defects based on past experiences. This serves two purposes: to facilitate industry knowledge exchange and to demonstrate our expertise to our clients.

CNC machining defects animation

Overcutting in Workpieces

Causes:

  1. Tool springing due to insufficient tool strength, excessive length, or small size.
  2. Improper operation by the operator.
  3. Uneven cutting allowance (e.g., 0.5 on curved side surfaces, 0.15 on the bottom).
  4. Inappropriate cutting parameters (e.g., excessive tolerance, too fast SF settings).

Improvements:

  1. Tool Usage Principle: Prefer larger and shorter tools where possible.
  2. Implement a chamfering program to maintain uniform allowance (consistent allowance for side and bottom surfaces).
  3. Adjust cutting parameters reasonably, rounding large allowance corners.
  4. Utilize the machine’s SF function, allowing operators to fine-tune speed for optimal cutting.
CNC Machining defects Overcutting in Workpiece

Centering Issues

Causes:

  1. Inaccuracy in manual operation by the operator.
  2. Burrs around the mold.
  3. Magnetic centering rods.
  4. Non-vertical sides of the mold.

Improvements:

  1. Manual operations should be carefully checked and repeated, centering at the same point and height as much as possible.
  2. Remove burrs around the mold with an oilstone or file, clean with a rag, and confirm by hand.
  3. Demagnetize the centering rod before using it on the mold (use ceramic rods or others).
  4. Use a dial indicator to check the mold’s verticality (discuss solutions with the fitter if there’s significant verticality error).

Tool Setting Issues

Causes:

  1. Inaccuracy in manual operation by the operator.
  2. Incorrect tool clamping.
  3. Errors in the tool tip on the fly cutter (inherent inaccuracies in the fly cutter).
  4. Discrepancies between R-cutters, flat-bottom cutters, and fly cutters.

Improvements:

  1. Carefully repeat manual operations, ensuring tool setting is consistent.
  2. Clean the tool clamp with an air gun or rag before clamping.
  3. When measuring the tool rod or base surface, use a single cutter tip on the fly cutter.
  4. Create a separate tool setting program to avoid discrepancies between R-cutters, flat-bottom cutters, and fly cutters.

CNC Crash – Programming

Causes:

  1. Insufficient or unset safety height (tool or chuck collides with the workpiece during rapid feed G00).
  2. Mismatch between the tool listed on the program sheet and the actual tool used in the program.
  3. Incorrect tool length (blade length) and actual machining depth listed on the program sheet.
  4. Discrepancies between depth Z-axis values on the program sheet and actual Z-axis measurements.
  5. Coordinate setting errors during programming.
CNC crash on programming

Improvements:

  1. Accurately measure the workpiece height and ensure the safety height is above the workpiece.
  2. Ensure consistency between the tool listed on the program sheet and the actual tool used (preferably use automated or pictorial program sheets).
  3. Measure the actual machining depth on the workpiece, clearly noting the tool length and blade length on the program sheet (typically, the tool clamping length should be 2-3mm above the workpiece, and the blade clearance should be 0.5-1.0mm).
  4. Accurately measure the Z-axis on the workpiece and clearly note it on the program sheet (this is usually a manual operation and should be double-checked).

CNC Crash – Operator Errors

Causes:

  1. Incorrect Z-axis depth tool setting.
  2. Errors in centering and operation numbers (e.g., not accounting for tool radius in single-side measurements).
  3. Using the wrong tool (e.g., using a D10 tool instead of a D4).
  4. Running the wrong program (e.g., running A9.NC instead of A7.NC).
  5. Incorrect manual operation of the handwheel direction.
  6. Pressing the wrong direction during manual rapid feed (e.g., pressing X instead of -X).

Improvements:

  1. Pay attention to the tool setting position on the Z-axis (bottom surface, top surface, split surface, etc.).
  2. Double-check centering and operation numbers after completion.
  3. Repeatedly check the tool against the program sheet and program before clamping.
  4. Run programs sequentially and in order.
  5. Operators should improve their proficiency with manual machine operations.
  6. Raise the Z-axis above the workpiece before moving it manually and quickly.

Surface Accuracy in Curved Areas

Causes:

  1. Unreasonable cutting parameters leading to rough surfaces on curved workpieces.
  2. Dull tool edges.
  3. Excessively long tool clamping and blade clearance.
  4. Poor chip removal, air blowing, and oil flushing.
  5. Programming of the cutting path (consider using climb milling where possible).
  6. Burrs on the workpiece.

Improvements:

  1. Set reasonable cutting parameters, tolerances, allowances, and feed speeds.
  2. Operators should regularly inspect and replace tools as needed.
  3. Clamp tools as short as possible, minimizing blade clearance.
  4. Set appropriate cutting, feed speeds, and tool types (flat, R, and ball nose cutters).
  5. Workpiece burrs are directly related to the machine, tool, and cutting path. Understanding the machine’s capabilities is crucial for re-cutting burr edges.

The post How Top CNC Machining Factories Handle CNC Machining Defects appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/cnc-machining-defects/feed/ 1
Precisión en el fresado por penetración: Geometría de la herramienta y parámetros de corte esenciales https://prototool.com/es/plunge-milling/ Wed, 13 Dec 2023 03:15:09 +0000 https://prototool.com/?p=16197 Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials
Prototool

If you’re already familiar with basic machining, plunge milling is like adding a powerful tool to your toolkit. Unlike regular cutting, which happens around the edges, plunge milling operations are done right at the end of the tooling. Now, why is this important? Imagine you have a long tool sticking out or dealing with tricky […]

The post Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials appeared first on Prototool written by Prototool.

]]>
Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials
Prototool

If you’re already familiar with basic machining, plunge milling is like adding a powerful tool to your toolkit. Unlike regular cutting, which happens around the edges, plunge milling operations are done right at the end of the tooling.

Now, why is this important? Imagine you have a long tool sticking out or dealing with tricky materials like titanium – plunge milling becomes the hero. It’s like a backup plan when things get tough, and other methods don’t quite work.

You might be thinking, “I know the basics, why bother with plunge cutting?” Well, here’s the deal: While it might not be the fastest way to remove metal under normal conditions, plunge milling shines in situations where other methods struggle.

Hence, to help you make the most of this CNC machining approach, this article will delve deeper into the concepts and machining approaches of plunge milling. So keep reading to learn all about it!

What to Know About The Cutting Process?

Understanding the cutting process is key. Unlike traditional milling, where radial forces dominate, plunge milling involves axial cutting forces. The process can be likened to interrupted boring, demanding a different approach to programming table feed and rapid traverse.

Plunge Milling Tips and Techniques

To make the most of plunge milling operations, consider these practical tips:

  • Opt for a horizontal machine for better chip evacuation.
  • Begin milling from the bottom and work your way up.
  • Use cutting fluid or compressed air to aid chip evacuation.
  • Compared to traditional methods, plunge cutting requires a lower feed per tooth.
  • Engage more than one tooth for enhanced efficiency.
  • Leverage extra-close pitch cutters for improved performance.
  • Gradually decrease plunge depth to minimize vibration.
  • Utilize a “hook program” to prevent re-cutting on the return stroke.
  • Maintain a constant stock for subsequent finishing operations.

Application Scenarios: Slots, Cavities, Corners

Once you understand the plunge milling operation’s importance, use the plunge-cutting technique and make the most of it. But when? Here are some specific scenarios where plunge milling proves beneficial:

  • Slots: Ideal for machining deep and closed slots. Effective chip evacuation is essential.
  • Cavities/Pockets: Critical for chip evacuation, especially in closed slotting. Consider a horizontal setup and cutting fluid for improved results.
  • Corners: Advantages in plunge milling operations for rest milling after roughing operations in deep 90-degree corners.

Feeds and Speeds in Plunge Milling Operation

Are you not yet familiar with plunge milling speeds and feeds? Let’s go ahead and explore the X and Y stepovers, feeds, and speeds then—essential elements for successful plunge milling.

X and Y Stepovers

To get started, let’s decide on the X and Y stepovers. According to Sandvik, a good starting point for the sideways motion is 80 percent of the cutter diameter. This helps prevent skinny stalks from sticking up in the corners between the holes.

Example of Roughing Out a Pocket

To better understand how plunge milling feeds and speeds, let’s consider an example where you have the task of roughing out a pocket with 1/8-inch corner radii. In this task, you have a limited end mill diameter of 1/4 inch and a pocket of 1 1/2 inches deep.

Here, using X and Y stepovers of 0.0625 inches, you can check feeds and speeds with G-code editor. Once you check, you may find a decent material removal rate but higher deflection, risking tool damage.

You can turn to the Plunge Milling Mini-Calc in this situation. This mini-calc allows us to enter Step Up and Step Over values, adjusting the feed rate accordingly.

After using a G-code editor for CNC machines, you will see that the material removal rate is back to an efficient level. Moreover, deflection will become less of a concern since you’re plunging.

Ultimately, this shows how plunge cutting emerges as a valuable technique in the manufacturing industry that solves various challenges and optimizes efficiency. All you need is to implement the right approach to X and Y stepovers and understand feeds and speeds better to implement this machining approach per your specific needs.

Unraveling CAM Packages and Techniques

Speaking of CNC machining coding and software used for plunge milling operations, we can’t miss exploring the ins and outs of plunge cutting, plunge milling operations, and the essential CAM packages you need to know about. So, let’s explore that further below.

Plunge Cutting 101

Let’s start with the basics—plunge cutting. This process is like making a straight, vertical cut into the material, almost like a direct downward motion. This technique is handy for creating features with a flat bottom.

Beyond basic plunge cutting, advanced plunge milling operations add a dynamic element to the manufacturing process. But, instead of a flat-bottomed cut, plunge cutting allows for a more versatile 3D cut. This is especially beneficial for intricate designs and varied surfaces.

Some additional facets of plunge milling that should be considered in this cutting process include:

Vertical Milling:

When we say fresado vertical, the tool moves up and down like a seesaw. It’s a vertical dance allowing precise cuts and efficient material removal. Vertical milling is a must-know for any aspiring machinist.

Direct Milling:

Direct milling is the shortcut you’ve been looking for. It’s straightforward, almost like going straight to the point without any detours. When time is of the essence, direct milling is your go-to move.

Straight Down Milling:

Straight Down milling is like a no-nonsense friend who gets things done efficiently. It’s a technique where the cutter moves straight down into the material with no fuss, no frills—just pure effectiveness.

Z-axis Machining: 

Z-axis machining is all about mastering the vertical dimension. It brings depth and precision to your cuts, taking your milling game to new heights.

Plunge Routing:

Plunge routing is your guide through the material maze. It involves making strategic cuts by plunging into the material at specific points. Think of it as the navigator ensuring you take the right route.

Deep Milling:

When you want to go beneath the surface, deep milling is your strategy. It’s all about making substantial cuts and exploring the depths of your material. Deep milling is your ticket to uncovering hidden potentials.

Vertical Plunge:

A vertical plunge is like a controlled dive into the material. It’s a precise downward movement that allows you to navigate with finesse. Vertical plunge is the secret to achieving accuracy in your machining adventures.

Direct Cut Milling:

Last but not least, direct-cut milling is the epitome of efficiency. It’s a technique that gets straight to the business of cutting, ensuring every move counts. When you’re aiming for effectiveness, direct-cut milling is your ally.

How to Pick the Right CAM Package?

Now that you know the plunge-milling family, let’s talk CAM packages. To choose the right CAM package for plunge milling toolpaths when operating a CNC machine, you need to:

Check if your CAM package supports true 3D or sticks to 2D plunge milling. True 3D provides more versatility, while 2D works for flat-bottomed features.

Another key consideration is how the plunge cycle retracts from the wall during the overall retraction. This clever technique, as often seen in the Plunge Rough retract style, reduces chatter and boosts tool life.

Conclusion: Plunge Milling Mastery

In the manufacturing landscape, where every cut counts, plunge milling offers unparalleled benefits. From its ability to reduce deflection and enhance tool life to its efficiency in machining tough materials, plunge milling is a versatile and indispensable technique.

It’s the key to unlocking intricate designs, maximizing material removal rates, and ensuring a superior surface finish. But, when you proceed with plunge milling operations, remember that even the most skilled craftsmen benefit from professional support. And if you’re ever stuck, we have your back as professional CNC manufacturers in the business for years now.

En Prototool, a trusted name in precision manufacturing, we offer various Servicios de fabricación CNC, custom manufacturing, and servicios de moldeo por inyección. Whether you need guidance on tool selection, advice on optimizing feeds and speeds, or comprehensive assistance in implementing plunge milling techniques, Prototool is your dedicated partner.

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado en rampa
Fresado por inmersión
Milli periféricong
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Precision in Plunge Milling: Tool Geometry and Cutting Parameter Essentials appeared first on Prototool written by Prototool.

]]>
Técnicas estratégicas para operaciones eficientes de fresado periférico https://prototool.com/es/peripheral-milling/ Wed, 13 Dec 2023 02:57:25 +0000 https://prototool.com/?p=16193 Strategic Techniques for Efficient Peripheral Milling Operations
Prototool

Peripheral milling is a crucial machining operation employed by intermediate and professional manufacturers to enhance metal removal rates and extend tool life. This guide explores various strategies, focusing on plain milling, standard milling, and the distinction between up-milling and down-milling. So, if you’re opting for plain milling for your next production project, read on to […]

The post Strategic Techniques for Efficient Peripheral Milling Operations appeared first on Prototool written by Prototool.

]]>
Strategic Techniques for Efficient Peripheral Milling Operations
Prototool

Peripheral milling is a crucial machining operation employed by intermediate and professional manufacturers to enhance metal removal rates and extend tool life.

This guide explores various strategies, focusing on fresado liso, standard milling, and the distinction between up-milling y down-milling.

So, if you’re opting for plain milling for your next production project, read on to learn all about peripheral milling operations – beyond the basics!

Peripheral Milling: A Brief Overview

Peripheral milling, commonly known as plain milling, is a milling operation that employs a rotating milling cutter with an axis parallel to the workpiece.

Unlike face milling, where the cutting tools are mounted perpendicular to the stock, in peripheral milling, the cutter’s cutting edges grind at the workpiece’s periphery, providing an efficient means to remove large amounts of surface material.

Types of Peripheral Milling

In plain milling, understanding the nuances of different techniques is crucial for optimizing machining processes. Let’s delve into two primary types: Up Milling and Down Milling (Climb Milling).

Up Milling

Up milling, or conventional milling, involves cutter teeth moving opposite the feed direction. This results in initially thin chips that gradually grow throughout the cut. The extended tool engagement leads to long chip formation.

However, it’s important to note that as the cutter exits, the workpiece may tend to lift, necessitating a sturdy fixture to maintain stability. Manufacturers should consider up-milling when seeking a robust cutting process, especially for materials where chip evacuation is critical.

Down Milling (Climb Milling)

In contrast, Down Milling, or Climb Milling, sees cutter teeth moving in the same direction as the feed. This produces shorter chips with decreasing thickness over the length of the cut. The reduced frictional forces contribute to minimized heat generation, extending tool life.

Tangential forces act downward, ensuring a steady cut and enabling an increased feed rate. Manufacturers should opt for down milling when prioritizing heat reduction, improved tool longevity, and a smoother machining experience, especially when high precision and finish are paramount.

Up Milling vs Down Milling

Up MillingDown Milling
Cutter direction opposite feedThe cutter direction is the same as the feed
Requires high-cutting powerOnly requires less cutting power
Cutting forces act upwardsCutting forces act downwards
Suitable for rough cuttingSuitable for surface finishing
High tool wear rateLess tool wear rate
Chip thickness increasesChip thickness decreases over the cut
Mostly used for ferrous metalsMostly used for aluminum and alloys

The Different Peripheral Milling Methods and Cutters

Understanding the ‘how’ and ‘when’ of peripheral milling methods and cutters is key when optimizing milling operations. As seasoned manufacturers, you’re already familiar with plain milling, so let’s delve into the nuances of these techniques and tools.

Peripheral Milling Methods

1. Slab Milling

  • Overview: Slab milling involves using a plain milling cutter, usually wider than the workpiece, to shape flat surfaces or efficiently reduce part thickness.
  • Usage: During slab milling, the cutter, wider than the workpiece, moves across, systematically removing material and creating a precisely flat surface or reducing thickness as needed.
  • Ideal for: This method is ideal for applications where large, flat surfaces must be created or when efficiently reducing part thickness is a primary objective.

2. Slot Milling

  • Overview: Slot milling utilizes a cutter with a width less than the part to create rectangular or round channels in the workpiece.
  • Usage: In slot milling, the cutter’s width is strategically less than the part, allowing it to form slots during the pass, making it particularly effective for crafting channels of varying shapes.
  • Ideal for: This method is ideal for applications requiring the creation of slots, especially when fine slots are needed for specific designs.

3. Side Milling

  • Overview: Side milling involves machining a surface at a right angle to the cutter’s axis of rotation.
  • Usage: The side milling cutter works by machining the side faces of the workpiece, creating a precisely flat vertical surface perpendicular to the cutter’s rotation axis.
  • Ideal for: Ideal for situations where machining side faces or creating flat vertical surfaces is a primary requirement.

4. Gang Milling

Overview: Gang milling is an operation where more than one parallel vertical surface is machined in a single pass.

Usage: Multiple cutters are mounted on the same arbor, spaced apart based on the required width using spacers, enabling the machining of multiple surfaces simultaneously.

Ideal for: This method is ideal when the objective is to efficiently machine multiple parallel surfaces simultaneously.

5. Straddle Milling

  • Overview: Straddle milling is similar to gang milling but has the unique feature of cutting two slots simultaneously.
  • Usage: Multiple cutters on the same arbor create two slots in a single pass, making it efficient for projects requiring the creation of dual slots.
  • Ideal for: Straddle milling is ideal for applications where dual slots must be created efficiently.

6. Form Milling

  • Overview: Form milling involves using specially designed cutters to machine different patterns on the workpiece.
  • Usage: Customized form milling cutters create intricate patterns like round recesses and beads on the workpiece, adding a unique touch to the machining process.
  • Ideal for: This method is ideal for applications that require the creation of intricate patterns and contours on the workpiece.

Peripheral Milling Cutters

1. Slab Milling Cutter

  • Overview: Slab milling cutters are circular discs with straight or spiral teeth on the periphery, designed for efficient material removal.
  • Ideal for: Perfect for horizontal milling applications where the goal is to remove a large amount of material and produce flat surfaces.

2. Side Milling Cutter

  • Overview: Side milling cutters have cutting teeth on one or both sides and teeth on the periphery, making them effective for straddle milling jobs and cutting slots.
  • Ideal for: For situations where straddle milling is required, efficient cutting of slots is a primary objective.

3. Staggered Milling Cutter

  • Overview: Staggered milling cutters are side milling cutters with teeth arranged in a zig-zag order.
  • Ideal for: Suitable for milling slots where the depth is larger than the width, preventing interference with the cutting actions.

4. Concave & Convex Milling Cutter

  • Overview: Concave and convex milling cutters can mill varying convex and concave contours on the workpiece surface based on the circular form’s diameter.
  • Ideal for: Perfect for applications that require milling surfaces with varying convex and concave profiles.

5. Woodruff Milling Cutter

  • Overview: Woodruff milling cutters have cutting teeth on the periphery of a disc connected to a straight shank.
  • Ideal for: Essential for precise cutting of keyways in shafts.

6. Hobbing Cutter

  • Overview: Hobbing cutters are cylindrical cutters with helical cutting teeth designed for cutting teeth in the workpiece.
  • Ideal for: Used specifically for cutting splines and sprocket gears.

You can strategically enhance your machining processes by considering the characteristics and applications of each peripheral milling method and cutter.

Whether crafting intricate patterns or efficiently removing material, selecting the right method and cutter ensures optimal results in your manufacturing endeavors.

Key Parameters in Peripheral Milling

Chip Thickness to Width of Cut Ratio

An optimal combination of chip thickness and cut width is paramount for effective peripheral milling. And with a proper balance between these two, you can easily reduce the machining time and increase tool life. Notably, thin chip thickness on exit and small engagement arcs result in longer life for a particular cutting tool.

Workpiece Entry – Rolling into the Cut

Among the proposed cutting strategies, entry into the workpiece is critical. The rolling-in technique, where the cutter rotates on a pivot point, gradually entering until the nominal width of the cut is reached, proves advantageous.

This approach minimizes chip thickness during exit, reduces temperature, and eliminates vibrations compared to direct entry.

Cutting Force Model for Cutter Entry

Considering the different types of cutters and their usage, it’s important to introduce a new cutting force model for estimating the entry of the cutter into the workpiece until total engagement.

For this, three distinct zones are identified during cutter entry: the cuts start until the workpiece’s left corner is reached, cutting the top surface of the workpiece, and complete engagement.

The force profile varies in the first two zones, highlighting the variable cutting conditions. Once fully engaged, the force profile stabilizes.

Advantages of Rolling-In Entry

Comparing straight-in and rolling-in entries, the evolution of cutting forces, chip formation, and volume of metal removal are analyzed.

The rolling-in technique exhibits a more gradual increase in cutting forces, resulting in thinner chips exiting the cutter from the start of the machining process. The engagement arcs are shorter, leading to lower temperatures in the cutting flute and reduced tool wear.

Conclusión

In conclusion, effective peripheral milling approaches can significantly improve tool life and metal removal rates, particularly emphasizing the rolling-in entry technique.

The experimental data presented in this guide serves as a foundation for manufacturers seeking to enhance their milling strategies. By implementing these insights, professionals can optimize their processes, reduce tool wear, and achieve higher efficiency in peripheral milling operations.

Still have questions? Consult our professional manufacturers at Prototool.

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado en rampa
Fresado por inmersión
Fresado periférico
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Strategic Techniques for Efficient Peripheral Milling Operations appeared first on Prototool written by Prototool.

]]>
Excelencia en el fresado lateral: Una inmersión profunda en técnicas y soluciones prácticas https://prototool.com/es/side-milling/ https://prototool.com/es/side-milling/#respond Wed, 13 Dec 2023 02:30:57 +0000 https://prototool.com/?p=16189 Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions
Prototool

Explore el fresado lateral sobre sus técnicas esenciales, selección de herramientas y soluciones prácticas para lograr precisión y eficacia en las operaciones.

The post Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions appeared first on Prototool written by Prototool.

]]>
Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions
Prototool

Precision is the heartbeat of side milling. This guide is your compass in navigating its depths. Tailored for manufacturers and operators in fresado horizontal, we will take you through the intricacies of tool material selection, technical aspects of side milling, and the critical distinctions between plain and edge milling.

So, if you’re looking for answers in the same, keep reading!

Selection of Cutting Tools and Materials for Side Milling

Whether it’s your first time operating a milling machine or you’re familiar with it already, it can be tricky to ensure all your herramientas de corte and materials are in check for every side milling endeavor.

So, before we move forward to the technical considerations, let’s consider the cutting tools and materials you should have around when using a horizontal milling machine for any project.

  • Tool Material Selection: Tailor your choice of materials, such as high-speed steel (HSS), carbide, cobalt, or diamond, based on the nuances of the workpiece. Consider factors like material composition, desired finish, and milling speed to make an informed decision.
  • Cutter Design Customization: Precision lies in the details. Customize the number of teeth, flute design, and cutter geometry according to the material’s specific demands and the milling operation’s intricacies.
  • Coatings for Extended Tool Life: Elevate tool longevity by exploring coatings like titanium nitride (TiN), enhancing the hardness and resistance to wear.

Technical Aspects of Side Milling

Moving onto the technical aspects, what cutting speeds, feeds, and other machine modifications do you look at before turning it on? Not sure? Here’s a list:

  • Cutting Speed Calculation: Delve into the specifics of cutting speed, measuring the tool’s edge movement through the material in surface feet per minute (SFM) or meters per minute (MPM). Precision here is the foundation for optimal results.
  • Feed Rate Determination: Uncover the intricacies of feed rate, defining the speed at which the workpiece engages with the cutter, measured in inches per minute (IPM) or millimeters per minute (MMPM). Achieving the perfect balance is an art.
  • Balancing Speed and Feed for Efficiency: Striking the right equilibrium between cutting speed and velocidad de alimentación is a technical requirement and an art form. This balance is the key to minimizing tool wear while maximizing productivity and achieving the desired surface finish.

The Role of Coolants and Lubricants

Another key consideration when operating a periphery milling machine is to keep the presence and usage of coolants and lubricants in check. What is the role of these materials? Let’s explore:

  • Coolants as Heat Dissipators: Coolants are essential for dissipating heat from the cutting zone. This critical function prevents tool overheating and ensures efficient chip removal.
  • Lubricants for Reduced Friction: Lubricants are key in lowering friction between the tool and the workpiece. This reduction enhances tool life and contributes to an impeccable surface finish.

Selection and Application Expertise

Once you understand the role of coolants and lubricants, picking the right lubricant for your specific milling needs is important. The choice depends on the machined material and the milling operation’s specific nuances. Also, while you’re at it, remember that applying these fluids is an art, requiring meticulous attention to detail.

Precision Unveiled: Plain Milling vs. Side Milling in Horizontal Machining

Now you know the key considerations of operating a side milling or edge milling machine. But how do you determine that you need a fresado horizontal and not a plain milling machine?

For this, understanding the differences between plain and side milling is important. Arbor milling cutters, namely plain and edge milling cutters, each bring unique attributes to the machining table. Let’s have a closer look at both these milling options.

Plain Milling: Crafting Refined Plane Surfaces

Plain milling, or slab milling, is the artisan’s choice for sculpting plane surfaces, especially when finesse is non-negotiable. Its spiral design empowers the simultaneous engagement of multiple teeth, ensuring a seamless operation with minimal vibrations and disturbances.

Here’s a detailed evaluation of this milling process:

CharacteristicsFresado liso
Cutter DesignIn this machine, helical design compensates for the absence of side-cutting teeth.
Setup ProcedureIt helps achieve optimal efficiency with a wider cutter than the surface. Smaller diameter cutter chosen for enhanced precision. Critical alignment, albeit less stringent than side milling, as top surface operations are the norm.
Machining MethodsIt involves two milling methods: Conventional Milling: Work fed into the cutter’s rotating direction. Climb Milling: Requires caution due to potential cutter breakage. (Check fresado convencional y fresado de ascenso)
Safety PrecautionsThe use of safety glasses is non-negotiable here. Rings, watches, and jewelry should also be removed to avoid accidents. Additionally, its important to consider the prudent use of rapid traverse, avoiding abrupt movements without loosening locking screws.

Side Milling: Mastering Intricate Grooves with Versatility

Side milling or external milling emerges as the virtuoso, excelling in crafting intricate steps or grooves. Distinguished by varying widths, diameters, and adaptable tooth arrangements—either straight or staggered—side milling showcases remarkable adaptability in the hands of seasoned machinists.

Here’s a detailed evaluation of this milling process:

CharacteristicsFresado lateral
Cutter DesignAdaptable design suited for cutting deep slots or grooves, with staggered toothed variants providing enhanced chip space at higher speeds.
Setup ProcedureMeticulous alignment is crucial for precise cuts. Precise calculation of spindle RPM based on cutting foot speed and cutter diameter. Critical feed rate calculation is contingent on the number of teeth on the cutter.
Machining MethodInside Milling Operations: Conventional milling is favored for optimal results.
Depth of CutIdeal Depths: Range between 100 and 200 thousandths, achieving a delicate balance between efficiency and precision.
Practical DemonstrationExemplifying the prowess of external milling, a meticulously carved groove in a previously machined part showcases the finesse and adaptability of this advanced machining approach.

In a nutshell, the choice between plain and side milling becomes an artful decision, each method revealing its prowess in the hands of a skilled artisan. While demanding precision, these techniques grant the operator a symphony of possibilities to craft intricate pieces with unparalleled finesse.

When Should You Consider Side Milling?

Side milling emerges as a versatile machining process with diverse applications across industries, presenting a strategic choice for skilled operators in various scenarios.

Understanding when to consider edge milling is crucial for achieving optimal results in machining operations.

Flat Surface Machining

Side milling becomes the method of choice when the objective is to create expansive flat surfaces on workpieces, particularly when their size exceeds the capabilities of alternative processes like grinding or planing.

This approach proves invaluable for crafting flat surfaces on substantial components such as machine beds, bases, and tables. The precision achievable through edge milling ensures the desired flatness in these critical elements.

Slotting for Gears and More

One of the prime applications of side milling is slotting, providing an effective means to generate slots or grooves along the sides of a workpiece. This capability is extensively employed in producing gears, keyways, and splines. Edge milling’s adaptability in creating these essential features contributes to its prominence in gear manufacturing and related industries.

Contouring Complex Geometries

Side milling transforms into a proficient tool for contouring, enabling the creation of intricate geometries and precise contours on a workpiece.

This method empowers operators to manufacture components with exacting shapes and dimensions by leveraging specialized cutting tools with diverse shapes and profiles. The nuanced control offered by horizontal milling makes it indispensable for applications demanding complex and precise geometrical features.

Surface Finishing Excellence

Side milling plays a pivotal role in achieving superior surface finishes, particularly critical in industries like aeroespacial, where the performance of components is intricately tied to surface quality.

The process ensures a smooth and refined surface finish on the workpiece, meeting the stringent requirements of aerospace applications where even minor imperfections can impact component performance.

Overcoming 3 Common Challenges in Side Milling

In the intricate world of external milling, addressing common challenges is paramount to achieving exceptional results. Let’s explore practical solutions for each aspect, ensuring a comprehensive approach to side-milling excellence.

1. Addressing Tool Wear: Prolonging Tool Life Through Vigilance

Tools in side milling undergo wear and tear, affecting their longevity and performance. To mitigate this, establish a comprehensive inspection routine that combines regular visual examinations with dimensional checks.

Early detection of wear signs is crucial. Additionally, consider strategically utilizing advanced coatings like titanium nitride (TiN) to enhance tool durability and increase hardness. Opting for tools crafted from robust materials such as carbide or high-speed steel (HSS) tailored to the workpiece’s demands further extends operational life.

2. Mastering Precision: Unleashing the Power of CNC Milling Machines

Precision in milling operations is essential and can be achieved through leveraging the capabilities of Computer Numerical Control (CNC) machines. The computerized precision offered by CNC technology ensures automated and consistent precision.

Here, you can utilize CNC technology or consider professional CNC manufacturers to help automate processes, guaranteeing consistently precise milling results. Furthermore, meticulous adjustments to milling paths for heightened accuracy, coupled with software solutions for dynamic optimization, contribute to mastering precision in external milling operations.

3. Perfecting Surface Finish: The Art of Achieving Impeccable Results

Attaining superior surface finishes on machined components requires a meticulous approach to tool selection and parameter optimization. Opt for tools with materials precisely matched to the workpiece’s requirements for optimal results.

Specialized tools designed for achieving superior surface finishes can make a significant difference. Additionally, fine-tuning milling parameters such as speed and feed is crucial for impeccable surface finishes.

It is also important to employ real-time monitoring and adjustment of milling parameters to adapt to changing conditions during the machining process, ensuring a perfect surface finish in horizontal milling operations.

Conclusión

The strategic application of side milling in flat surface machining, slotting, contouring, and surface finishing underscores its significance in machining operations.

The adept use of specialized cutting tools and precise control in edge milling empowers operators to navigate the intricacies of external machining processes. It is an indispensable technique in the toolkit of those engaged in horizontal milling and advanced surface machining.

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado en rampa
Fresado por inmersión
Milli periféricong
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Side Milling Excellence: A Deep Dive into Techniques and Practical Solutions appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/side-milling/feed/ 0
Llevar el fresado frontal al siguiente nivel: Todo lo que necesita saber https://prototool.com/es/face-milling/ https://prototool.com/es/face-milling/#respond Wed, 13 Dec 2023 02:25:08 +0000 https://prototool.com/?p=16185 Taking Face Milling to the Next Level: Everything You Need to Know
Prototool

Explore un impresionante artículo sobre el fresado frontal, que abarca desde estrategias básicas hasta avanzadas para lograr precisión en el mecanizado CNC.

The post Taking Face Milling to the Next Level: Everything You Need to Know appeared first on Prototool written by Prototool.

]]>
Taking Face Milling to the Next Level: Everything You Need to Know
Prototool

¿Alguna vez se ha sentido perdido en el mundo de fresado frontal¿No está seguro de qué herramienta se adapta mejor a sus necesidades de precisión? Si lo suyo es el sonido de las fresadoras, no está solo. Esta breve guía está aquí para ayudarle.

El fresado frontal, en el que la herramienta de corte se encuentra con la superficie en un ángulo perfecto, creando esas superficies planas y lisas, puede ser complicado.

fresado frontal estándar

Exploración del fresado frontal frente al fresado periférico: Un análisis comparativo

En el fresado, la elección entre fresado frontal y periférico pueden influir significativamente en los resultados del mecanizado. Profundicemos en los matices de cada método y descubramos sus características únicas.

AspectoFresado frontalFresado periférico (Fresado de losas)
Orientación del cortadorLa fresa se coloca perpendicular a la pieza a fresar, lo que permite un contacto directo con la pieza.La fresa se alinea en paralelo a la pieza, rectificando la parte superior de la pieza desde los lados.
Punto de contactoEn el fresado frontal, la punta de la fresa engrana directamente con la superficie de la pieza durante el mecanizado.Los lados de la fresa entran en contacto con la superficie superior de la pieza de trabajo, iniciando el arranque de material.
Método de corteEl fresado frontal completa el corte utilizando la cara plana de la fresa, cuyo eje es perpendicular a la superficie de la pieza.El fresado periférico realiza el corte utilizando los dientes periféricos de la fresa, que desprenden material de la pieza.
Dientes de corteEn el fresado frontal, los dientes de la fresa se colocan estratégicamente tanto en la periferia como en la cara de la herramienta de fresado.En el fresado periférico, los dientes se sitúan exclusivamente en la periferia de la fresa, lo que contribuye al arranque de material.
Enfoque de corteEl fresado frontal se basa principalmente en los dientes periféricos para el corte, mientras que los dientes frontales se encargan de las operaciones de acabado.El fresado periférico se utiliza principalmente para el mecanizado de superficies planas, centrándose el corte en el contorno axial de la fresa.
Compatibilidad de máquinasEl fresado frontal es versátil y aplicable tanto en máquinas de husillo horizontal como vertical.El fresado periférico se realiza generalmente en máquinas de husillo horizontal.
Retirada de materialEl fresado frontal es ideal para el mecanizado de precisión que requiere un arranque mínimo de material, proporcionando un acabado superficial superior.El fresado periférico destaca en la eliminación eficaz de grandes cantidades de material, priorizando la eficacia sobre el acabado superficial.
Ideal paraEl fresado frontal es preferible cuando la precisión es crucial y se requiere una eliminación mínima de material para obtener un acabado superficial superior.El fresado periférico es la elección más acertada cuando la prioridad es la eliminación sustancial de material, haciendo hincapié en la eficacia del mecanizado.

¿Cómo realizar con éxito el fresado frontal? Explicado en

El fresado frontal emplea una amplia gama de fresas, incluidas las que tienen un ángulo de entrada de 45º, las fresas de plaquita redonda, las fresas de escuadra y las fresas laterales y frontales. Elegir la herramienta adecuada es fundamental para lograr una productividad óptima.

Elección de herramientas: Exploración de las fresas frontales

Es fundamental comprender los conceptos de la fresa. El diagrama siguiente ilustra las principales áreas de aplicación, considerando el corte, ap, y la profundidad de avance por diente, fz.

  • 10°-65° Fresas de refrentar y plongée: Fresas de gran alcance adecuadas para operaciones de fresado frontal y fresado por penetración.
  • Fresas de 45°: Ideal para usos generales, reduce las vibraciones y permite un efecto de adelgazamiento de las virutas.
  • Fresas de 90: Adecuado para componentes de paredes finas y de fijación débil, proporcionando una forma de 90° cuando sea necesario.
  • Fresas redondas y de gran radio: Herramientas versátiles con excelentes capacidades de rampa para procesos exigentes de fresado frontal y operaciones de perfilado.
herramienta de corte para fresado frontal

Tipos de operaciones

Fresado frontal intermitente

  • Aplicación: Superficies con interrupciones.
  • Recomendaciones: Evite el fresado frontal sobre las interrupciones. Si es inevitable, reduzca el avance en 50% sobre la zona interrumpida.

Fresado frontal de secciones de pared delgada

Consideraciones: Principales fuerzas de corte, componentes axialmente débiles, selección de fresas.

Consejos:

  • Utilice una fresa de hombro de 90° para componentes axialmente débiles.
  • Como alternativa, utilice una fresa frontal de corte ligero.
  • Evite pequeñas profundidades axiales de corte (<0,5-2 mm) y utilice una fresa de paso grueso.

Canteado de secciones finas

  • Posicionamiento: Descentrado para cortes más suaves.
  • Factores: Paso de la fresa, geometría de la plaquita y datos de corte bajo.
  • Recomendaciones: Elija un radio de plaquita más pequeño, un terreno paralelo más corto y datos de corte bajos para obtener resultados óptimos.

Lista de control y consejos

  • Cortar con un rodillo: Tenga en cuenta la estabilidad de la máquina, el tamaño y el tipo de husillo.
  • Diámetro del cortador: Mantener 20-50% más grande que la pieza de trabajo.
  • Formación de virutas: Aplicar fresado descendente para una formación de viruta favorable.

Fresado de alta alimentación: Superando los límites de la productividad

Fresado de alto avance implica velocidades de corte superiores a 1.000 m/min y un elevado avance de la mesa, vf. Aplicable en escenarios específicos, que exigen consideraciones distintas.

Elección de herramientas

  • Máx. Profundidad de corte (ap): 1,2-2 mm.
  • Diámetro de la fresa (DC): 25-160 mm.
  • Materiales: Adecuado para diversos materiales.

Cortadoras de alto avance

  • Fresas de alta productividad con un ángulo de entrada de 10°.
  • Altas velocidades de avance a pequeñas profundidades de corte.
  • Optimizado para el mecanizado a alta velocidad de acero templado.
  • Ideal para contornos de desbaste a semiacabado y configuraciones asimétricas.

Cortadores de plaquita redonda

  • Aumento del efecto de adelgazamiento de la viruta en el corte axial reducido.
  • Adecuado para diversas condiciones.
  • Fresas de uso general para condiciones duras o ligeras.

¿Cómo aplicar el fresado de alta alimentación?

  • Fresas con ángulo de entrada pequeño: Aumenta drásticamente la alimentación con efecto de adelgazamiento de virutas.
  • Dimensiones, mm (iC, R, b, ap, x): Garantizar un ángulo de entrada bajo y reducir el grosor de la viruta.

Fresado frontal de alta resistencia: Afrontar retos difíciles

Tacos de fresado frontal para trabajos pesados fresado en bruto de materiales pesados, que exigen herramientas robustas capaces de soportar altas temperaturas y fuerzas.

Elección de herramientas

Ángulo de entrada (κr): 60° para un rendimiento óptimo.

Insertos redondos: Profundidad de corte máxima de 13/18 mm.

Fresas de 60

  • Manipulación eficaz de las herramientas para reducir los tiempos de inactividad.
  • Capacidad de corte de hasta 18 mm para arranque de viruta y mecanizado de superficies irregulares.
  • Alta productividad con velocidades de avance de 0,4-0,7 mm por diente.

Fresas de 45-90° para trabajos semipesados

  • Capacidad de corte más ligera.
  • Profundidades de corte de 6-8 mm dentro de un rango de avance de 0,2-0,6 mm.
  • La primera elección para el fresado de superficies y hombros de uso medio.

Fresas redondas grandes

  • Cizalla de resistencia media con bordes resistentes para condiciones duras.
  • Ocho filos de corte para un rendimiento óptimo.
  • La profundidad máxima de corte es de 10 mm.

¿Cómo aplicar el fresado frontal de alta resistencia?

  • La entrada en el corte es crítica; programa para rodar en el corte.
  • Consideraciones sobre la posición y el tamaño de la fresa para múltiples pasadas y un acabado superficial óptimo.
  • Esté atento a las altas temperaturas; mantenga la evacuación de virutas para prolongar la vida útil de la herramienta.

Acabado con inserciones de limpiaparabrisas

Elección de herramientas

Ángulo de entrada (Kr): 45°, 65°, 90°.

Acabado superficial (Ra): < 1,0 para diversos materiales.

Insertos de borde de limpiaparabrisas

  • Hay disponibles diferentes longitudes y versiones.
  • Grados para la mayoría de los materiales de las piezas de trabajo.
  • Asientos de inserción ajustables para aplicaciones específicas.

Aplicación

  • Aumente el avance 2-3 veces con las plaquitas rascadoras para mejorar la calidad de la superficie.
  • Utilice alta velocidad de corte, fluido de corte o neblina de aceite para diferentes materiales.
  • Compense la excentricidad axial con el suelo rascador abombado para obtener una superficie sin escalones.

4 consejos clave para mejorar la eficacia del fresado frontal

Para garantizar procesos de fresado facial sin fisuras y lograr resultados óptimos, tenga en cuenta los siguientes consejos prácticos:

1. Selección de fresas para mayor precisión

La elección de la fresa adecuada es fundamental para el éxito del fresado frontal. Adapte su selección en función de las características del material, el acabado superficial deseado y las necesidades específicas del cliente. mfresadora utilizados. Opte por puntas de corte con bordes afilados, menos dientes y un ángulo de desprendimiento positivo, ideal para operaciones de acabado refinado.

2. Ajuste fino de los parámetros de corte

La optimización de los parámetros de corte es clave para equilibrar eficacia y calidad. Ajuste fino de la velocidad del husillo, avance y profundidad de corte según sus necesidades de mecanizado.

Aunque el aumento de la velocidad del husillo y de la velocidad de avance aumenta el rendimiento, hay que tener cuidado de no comprometer la precisión. Los parámetros agresivos pueden dar lugar a una calidad inferior, menor precisión acabado superficialy desgaste acelerado de la herramienta.

3. Mitigación de las vibraciones para un acabado de calidad

Las vibraciones amenazan el acabado superficial y la longevidad de la herramienta, pudiendo provocar la rotura de la punta. Para contrarrestarlas, dé prioridad a una sujeción eficaz de la herramienta y garantice una gran rigidez de la máquina y la pieza. Minimizar las vibraciones mejora la calidad de la superficie al reducir las vibraciones durante el fresado superior.

4. Aplicación de una refrigeración eficiente

Una refrigeración adecuada es crucial para evitar la acumulación de calor y virutas en la herramienta de corte. Utilice un refrigerante adecuado para facilitar una disipación eficaz del calor durante el corte. Un sistema de refrigeración eficaz prolonga la vida útil de la herramienta y elimina rápidamente las virutas, lo que contribuye a mejorar el acabado superficial.

Conclusión

En esta guía, nos hemos adentrado en el fresado de alto avance, explorando su potencial para aumentar la productividad y la precisión, y hemos desmitificado el arte del fresado de alto avance. acabado con inserciones de limpiaparabrisas para un acabado perfecto de la superficie.

Recuerde que la elección de las herramientas adecuadas, el ajuste de la configuración de corte y la estabilidad de la máquina son sus aliados en esta tarea. fresado frontal aventura. Independientemente de su nivel de experiencia, nuestra guía simplifica el fresado frontal, proporcionándole los conocimientos y la confianza necesarios para utilizar eficazmente este método.

Con estos sencillos pero poderosos consejos, estará listo para elevar su nivel de fresado frontal. La precisión en el fresado no es solo una habilidad; es su camino para convertirse en un maestro del mecanizado.

Dicho esto, si sigues atascado en algún sitio y necesitas ayuda profesional, Prototool ¡le cubre las espaldas! Cuente con nuestros fabricantes profesionales de Prototool para un fresado y una fabricación a medida fiables, eficientes y puntuales. Servicios de fabricación CNC para satisfacer cualquier necesidad. Póngase en contacto con nosotros hoy mismo.

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado en rampa
Fresado por inmersión
Milli periféricong
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Taking Face Milling to the Next Level: Everything You Need to Know appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/face-milling/feed/ 0
Optimización del mecanizado CNC: Una inmersión profunda en el mundo del fresado en rampa https://prototool.com/es/ramp-milling/ https://prototool.com/es/ramp-milling/#respond Wed, 13 Dec 2023 02:14:41 +0000 https://prototool.com/?p=16181 Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling
Prototool

When considering precision machining, mastering advanced techniques is not just a skill—it’s a necessity. One such advanced CNC machining technique that should be considered to cater to certain manufacturing needs is “ramp milling.” Why is this essential? Mainly because it offers a unique blend of efficiency and precision. This article will unravel all things ramp […]

The post Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling appeared first on Prototool written by Prototool.

]]>
Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling
Prototool

Al considerar mecanizado de precisiónEl dominio de técnicas avanzadas no es sólo una habilidad, es una necesidad. Una de estas técnicas avanzadas de mecanizado CNC que debe tenerse en cuenta para satisfacer determinadas necesidades de fabricación es "fresado en rampa." ¿Por qué es esencial? Principalmente porque ofrece una combinación única de eficacia y precisión.

Este artículo desentrañará todo lo relacionado con el fresado en rampa para ayudarle a conseguir la misma eficacia y precisión en sus procesos de producción. Así que, sin más dilación, sigamos explorando.

Breve descripción del fresado en rampa

La rampa es un método de mecanizado dinámico que conlleva un herramienta de corteEl movimiento radial y axial simultáneo de la herramienta forja una trayectoria angular. El objetivo principal es recorrer contornos intrincados a la perfección, especialmente al fabricar formas cerradas como bolsillos, cavidades, grabadosy agujeros.

A diferencia de los métodos tradicionales, el ramping elimina la necesidad de realizar inmersiones iniciales con una fresa o broca, lo que agiliza el proceso de mecanizado.

Ahora bien, si ya conoce bien los fundamentos del mecanizado, comprender y dominar las operaciones de fresado en rampa se convierte en una habilidad fundamental. Sobre todo en el micromecanizado, donde la precisión es primordial, el fresado en rampa resulta indispensable.

dibujo de fresado en rampa

La posibilidad de crear formas cerradas sin los inconvenientes de la penetración garantiza un flujo de trabajo más fluido y eficaz. Además, el fresado en rampa se perfila como una solución fiable en el delicado mundo del micromecanizado, donde el más mínimo desequilibrio en las fuerzas de corte puede suponer el fallo de la herramienta.

Exploración de las sendas de rampa: Lineal vs. Circular

Rampa lineal

Rampa lineal, un método muy utilizado y eficaz, supone un cambio radical en el mecanizado de ranuras cerradas, cajeras y cavidades. Este método, también conocido como rampa de dos ejeselimina la necesidad de utilizar una broca, lo que agiliza el proceso de mecanizado. Implica la alimentación simultánea en la dirección axial (Z) y en una dirección radial (X o Y).

Rampa circular

Alternativamente, Rampa circular, interpolación helicoidal, interpolación en espiralo perforación orbital introduce un movimiento en espiral a lo largo de una trayectoria circular (X e Y), combinado con un avance axial (Z) a un paso definido.

Este método es siempre preferible a la rampa lineal, ya que garantiza un proceso más suave con un compromiso radial reducido. El resultado es un fresado descendente puro y una mejor evacuación de la viruta, especialmente cuando se ejecuta con rotación en sentido contrario a las agujas del reloj.

Elevación de industrias a través de la precisión en el mecanizado CNC y el moldeo por inyección

Comprender los ángulos de la rampa de salida

Otra consideración clave para los procesos eficaces de fresado en rampa es ángulos de rampa de salida. Una gama recomendada de 3° a 10° garantiza resultados óptimos para materiales blandos o no ferrosos.

Por el contrario, se aconseja un rango más estrecho de 1° a 3° cuando se trabaja con materiales duros o ferrosos. Estos ángulos de rampa iniciales sirven de guía, permitiendo a los fabricantes navegar por las complejidades del fresado en rampa con precisión y confianza.

Técnicas de rampa eficaces

Ahora que entendemos las facetas clave de la operación de fresado en rampa, exploremos los consejos y consideraciones para un fresado en rampa exitoso:

Consejos de rampa lineal

  • Entender el corte simultáneo: Durante la rampa lineal se producen simultáneamente tres procesos de corte críticos. Estos son:
    • Corte periférico con la plaquita guía.
    • Corte inferior con la plaquita guía.
    • Corte inferior con el inserto de arrastre.
  • Hacer frente a las fuerzas cortantes: Las fuerzas de corte generadas durante la rampa lineal son axiales y radiales, lo que ejerce una tensión adicional sobre la herramienta, especialmente durante las operaciones de ranurado completo.
  • Recomendaciones para reducir el estrés: Para mitigar el estrés y garantizar un rendimiento óptimo, es aconsejable:
    • Reducir la alimentación a 75% de la tasa normal.Implementar el uso de fluido de corte para facilitar una evacuación eficaz de las virutas.
    • Limite la rampa lineal a ranuras estrechas de menos de 30 mm de ancho, especialmente si el acceso a la rampa circular está restringido.

Consideraciones sobre la rampa circular:

  • Selección del diámetro de la cuchilla: La selección del diámetro de fresa adecuado garantiza la alineación con el tamaño de orificio deseado. Esto garantiza que la plaquita corte sobre la línea central del orificio, evitando cualquier problema de desalineación.
  • Consideraciones sobre la inclinación (P): El paso (P) no debe superar el paso máximo admisible para el concepto de fresa elegido. Este valor depende del diámetro del agujero, del diámetro de la fresa y del ángulo de rampa utilizado.
  • Ajustes de la velocidad de avance: En velocidad de alimentación depende del avance periférico, calculado como Dvf. Sin embargo, requiere ajustes para el avance central de la herramienta, asegurando que la trayectoria programada de la fresa se alinea con el resultado de fresado deseado.

Corrección y optimización de la trayectoria de la herramienta

  • Rampa progresiva para mejorar la productividad: Optar por la rampa progresiva, que implica pases múltiplesresulta beneficioso para aumentar la productividad en comparación con rampa de un solo paso estrategias.
  • Maximización de los ángulos de rampa teniendo en cuenta el diámetro de la herramienta: Deben realizarse ajustes para los ángulos de rampa máximos, teniendo en cuenta factores como el radio de la plaquita y el diámetro de la herramienta. Esto garantiza la precisión del trabajo y reduce la posibilidad de dañar las herramientas.
  • Rampa circular externa para mejorar la eficiencia: Emplear rampa circular exterior con un mayor avance del centro de la herramienta para el fresado exterior permite una menor profundidad radial (ae) y una mayor velocidad de corte. Esto contribuye a mejorar la eficiencia y el rendimiento del mecanizado.

¿Se puede realizar un fresado lineal en material macizo?

Por supuesto. La rampa lineal en material macizo presenta un reto y una oportunidad únicos en el mecanizado. Este método, que implica un rampa de ancho total exige un examen minucioso de las velocidades de corte y los avances óptimos.

La fresa de mango, al engranar con la pieza a 360 grados, requiere una velocidad de corte reducida para preservar los filos de corte y evitar daños.

Comprender las velocidades y las alimentaciones en rampa

Dado que el fresado en rampa difiere significativamente del fresado normal, resulta imprescindible ajustar las velocidades de corte y los avances. Por lo tanto, también puede considerar 50-80% de la velocidad de corte normal. En este enfoque, el avance debe alinearse con la tabla proporcionada para el ajuste de la carga de viruta en rampa basado en el ángulo de rampa.

  • 0-2,5 grados: 100% de avance normal
  • 2,5-5 grados: 75% del avance normal
  • 5-15 grados: 50% del avance normal
  • 15-30 grados: 25% del avance normal
  • 30-45 grados: 5% del avance normal
proceso de fresado en rampa

Guía paso a paso de la rampa: Todo lo que necesita saber

1. Elegir la herramienta adecuada

Seleccionar una herramienta adaptada para manejar las fuerzas de corte y facilitar la evacuación de las virutas es primordial. El uso de herramientas como la Fábrica Kennametal 1™ molino de hombros u otros pueden ayudar a ejemplificar la excelencia en la rampa y el fresado en espacios reducidos.

2. Determinar el ángulo de la rampa

En ángulo de rampa La elección depende de la geometría de la herramienta, las propiedades del material y la profundidad de corte prevista. Pedir consejo a un experto de Kennametal puede aclararle las dudas.

3. Programar la trayectoria de la herramienta

Un fresado eficaz exige una programación precisa de la trayectoria de la herramienta. Utilice Software CAD/CAM o programación manual para garantizar que la herramienta entra en la pieza con el ángulo correcto, respetando la trayectoria deseada.

4. Probar y optimizar

Una vez programado, realice pruebas para optimizar el proceso de fresado. Ajuste la velocidad de corte, el avance y el ángulo de rampa para lograr los resultados deseados.

5. Supervisar el proceso

La vigilancia durante el fresado es crucial. Vigile de cerca las fuerzas de corte, la evacuación de virutas y el acabado superficial para garantizar una operación fluida y satisfactoria.

Interpolación helicoidal frente a rampa lineal: ¿Son diferentes?

Comprender las diferencias entre interpolación helicoidal y rampa lineal es fundamental en la rampa. ¿Qué son estos dos términos? Veámoslo brevemente a continuación.

Interpolación helicoidal

  • Ideal para bolsillos estrechos.
  • La fresa se mueve continuamente, distribuyendo las fuerzas de corte a través de los ejes X, Y y Z.
  • Mecanizado preciso de orificios, roscas y ranuras.

Rampa lineal

  • Implica el movimiento de la herramienta a lo largo de los ejes X, Y y Z.
  • El ángulo de entrada dicta la dirección del corte.
  • Una forma habitual de empezar es utilizando el fresado ascendente, en el que la fresa gira en la misma dirección en la que se mueve la mesa.

¿Cuándo hay que fresar en rampa?

Una vez comprendido cómo realizar operaciones de fresado en rampa, es importante aprovechar al máximo esta técnica de fresado en el momento adecuado. Al fin y al cabo, este método de fresado mejora la separación de virutas durante movimientos de rampa lineales prolongados.

Pero hay que tener en cuenta algunas desventajas, como las posibles limitaciones impuestas por la geometría de las troneras, que restringen la viabilidad de los movimientos lineales largos en rampa.

Teniendo en cuenta tanto las ventajas como los inconvenientes, lo ideal es practicar las operaciones de fresado en rampa en las siguientes situaciones:

  • Existen restricciones de bolsillo: En situaciones en las que el fresado lineal tradicional se enfrenta a limitaciones debidas a geometría de bolsilloEl fresado en rampa ofrece una alternativa que optimiza la holgura de la viruta.
  • El mecanizado de material macizo es crucial: El trabajo con material macizo exige un enfoque matizado. El fresado en rampa, con sus velocidades y avances adaptados, garantiza la conservación de los filos de corte y evita daños.
  • La eficacia y la precisión no son negociables: El fresado en rampa es una técnica versátil que aúna eficacia y precisión, tanto para conseguir diseños complejos como para mantener la longevidad de la herramienta.

Conclusión

Esta guía sirve de brújula, guiando a los fabricantes a través de las complejidades del fresado en rampa y proporcionando información paso a paso sobre los métodos de rampa lineal y circular. Desde la comprensión de las velocidades y los ajustes de avance hasta la elección de las herramientas adecuadas y la optimización de las trayectorias de las herramientas, los fabricantes adquieren una comprensión exhaustiva del proceso.

¿Aún tiene preguntas? Prototool es su aliado de confianza. Como fabricación profesional CNC Prototool aporta experiencia y tecnología punta. Si busca asistencia, asesoramiento o soluciones de vanguardia para sus necesidades de mecanizado, Prototool está preparado para ser su socio en el éxito.

The post Optimizing CNC Machining: A Deep Dive into the World of Ramp Milling appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/ramp-milling/feed/ 0
Torneado interior vs. Torneado exterior: Diferencias y usos https://prototool.com/es/internal-turning-vs-external-turning/ https://prototool.com/es/internal-turning-vs-external-turning/#respond Mon, 11 Dec 2023 03:04:37 +0000 https://prototool.com/?p=15904 Internal Turning vs. External Turning: Understanding the Difference and Usage
Prototool

Descubra la comparación entre torneado interior y exterior a partir de los mecanismos, la selección de herramientas y las estrategias avanzadas.

The post Internal Turning vs. External Turning: Understanding the Difference and Usage appeared first on Prototool written by Prototool.

]]>
Internal Turning vs. External Turning: Understanding the Difference and Usage
Prototool

As we aim to manufacture the ideal products, we need smart ways to handle the challenges that come with it. Now, imagine making parts exactly how you want them. How can you do that? This is where internal and external turning comes in. They’re like problem-solving tools for making products precisely as they should be.

Obviously, we all want to make parts that comply perfectly with our manufacturing requirements, but it’s not easy. The usual ways of manufacturing items sometimes don’t work well, especially when dealing with tight spaces, different materials, and specific measurements.

But guess what? Internal and external turning are like secret weapons that help us solve these problems. They’re special ways of doing things that guide us through the tricky parts of modern making. And, if you’re planning to implement these approaches to make your manufacturing processes more accurate, trust us – you’re making the right decision.

In this guide, we’ll help you better understand the use, mechanism, and potential of internal and outer diameter turning so it’s easier to implement these mechanisms whenever needed. Let’s begin exploring now!

External Turning Mechanism

Exterior turning is a crucial process focused on shaping the outer surface of a part to meet precise dimensional standards and achieve a smooth surface finish.

External Turning Show

In this mechanism, ordinary cylindrical turning tools come into play, each designed with specific main declination angles to address various turning scenarios.

Tool Selection

  • Ordinary Cylindrical Turning Tools: These tools, categorized by main declination angles such as 95°, 90°, 75°, 60°, and 45°, offer flexibility in handling different parts. The choice between 90° and 95° tools is ideal for slender shafts, while 75°, 60°, and 45° tools excel in turning short and thick outer circles. Notably, 45° tools can also perform chamfer turning.
  • Negative-Angle Blade Turning Tools: Negative-angle blades, known for their economic efficiency, outshine their positive-angle counterparts. They are particularly beneficial for large back-feeding and processing with substantial feed amounts. The larger size of negative-angle blades enhances their versatility, and their tip strength surpasses that of positive-angle blades.

Consideraciones

Outer surface turning involves navigating the dynamics of axial and radial forces during cutting. The choice of tool angles becomes critical in determining the efficiency of the process.

The nuanced strengths and lengths of different blade shapes impact the overall performance, making it essential to align the tool selection with the specific demands of each turning operation.

Internal Turning Mechanism

Another turning approach often used in injection molding and CNC manufacturing processes is internal turning. Let’s explore the key considerations of this hole-turning method.

Internal Turning Show

Characteristics

Internal turning or inner diameter turning, distinct in its approach, focuses on shaping inner holes while dealing with unique challenges. The semi-closed nature of the process makes it challenging to observe chip evacuation, influencing the overall processing quality. Deep hole cutting introduces vibrations in the arbor, necessitating specialized strategies.

Tooling Strategies

  • Carbide Drill Arbor for Small-Diameter Hole Cutting: To address the challenges posed by small-diameter hole cutting, employing a carbide drill arbor proves effective. This tooling strategy enhances precision and reliability in these scenarios.
  • Vibration Arbor for Medium Diameter and Above: Managing vibrations in medium-diameter hole cutting becomes crucial. Here, a dedicated vibration arbor comes into play, mitigating issues related to tool wear and ensuring a smoother cutting process.

Consideraciones

Internal turning requires a keen understanding of chip evacuation dynamics and the impact of hole depth on tool overhang. The choice of tools is restricted by the hole diameter and part length, necessitating careful consideration based on the specific requirements of each inner diameter turning operation.

Understanding Internal Turning’s Intricacies

Influencing Factors of Internal Turning Operation

  • Tool Overhang Challenges: Unlike external turning, the length of the CNC turning part and the size of the toolbar significantly affect tool overhang in hole turning. This dynamic demands careful consideration, as long overhangs may lead to deflection and vibrations.
  • Critical Cutting Forces: The direction and magnitude of cutting forces play a pivotal role in internal surface turning. Achieving minimal vibration and enhanced machining quality requires a keen understanding of tangential and radial cutting forces. The tool’s back angle becomes crucial, especially in small-diameter turning holes.
  • Chip Evacuation and Clamping Dynamics: Challenges such as poor chip evacuation, improper clamping, and tool-related factors can impact internal diameter turning. Optimal solutions involve strategic tool nose radius selection, effective chip removal methods, and stable clamping techniques.

Considerations for Machining Quality Improvement

  • Tool Nose Radius Selection: Choosing a small nose radius is key to minimizing radial and tangential cutting forces. The nose radius should be slightly less than the cutting depth for optimal results, ensuring a stronger cutting edge, improved surface texture, and uniform pressure distribution.
  • Tool Groove Influence: The groove type of the cutting tool plays a decisive role in internal turning. Positive rake angle groove types with sharp cutting edges and high strength are preferred for machining inner holes.
  • Cutting Edge Angle Consideration: The cutting edge angle significantly affects radial, axial, and composite forces. Selecting an angle close to 90° and not less than 75° is recommended to balance axial and radial cutting forces.
  • Tool Treatment Impact: The rounding of the cutting edge influences cutting force. Uncoated tools exhibit smaller rounding than coated ones, impacting flank wear. Considerations for long tools overhanging and machining small holes are crucial.
  • Clamping Stability: The stability of cutting tools and turned components relies on effective clamping. Achieving stability involves factors like surface finish, hardness, and clamping methods, emphasizing overall support for optimal results.
  • Efficient Chip Removal: Chip removal significantly influences machining effects and safety, especially in deep hole and blind hole processing. Internally cooled tools, right-cutting fluids, and compressed air for through-hole machining are recommended for effective chip control.

Internal Turning’s Precision Paradigm

Hole turning’s meticulous approach achieves tight tolerances and intricate details within workpieces, ensuring the internal features meet specifications. Surface finish and dimensional accuracy are meticulously controlled, catering to industries where microns matter.

External Turning’s Exterior Precision

En surface turning, the focus lies on the workpiece’s exterior surfaces. The cutting tools, positioned outside the workpiece, sculpt the outer contours, ensuring dimensional accuracy and surface finish. Challenges include managing tool wear and optimizing cutting speeds for consistent results across varied materials and geometries.

External Turning’s Backbone Role

External turning is the backbone of manufacturing, catering to various components across industries. Its versatility shines from turning shafts in automotive applications to creating structural elements in construction. Outer diameter turning plays a pivotal role in producing components that form the backbone of various systems.

Advancements in Turning Technologies

The evolution of internal surface turning is a testament to its resilience in adapting to modern challenges.

The most easy-to-understand comparison of external turning and internal turning

Advancements in materials, including superalloys and composites, have pushed the boundaries of traditional machining. Internal turning‘s ability to tailor solutions for these cutting-edge materials solidifies its role as a key player in modern manufacturing.

  • Adaptability to Superalloys: The rise of superalloys in various industries, particularly aerospace, has necessitated an evolution of machining. Internal turning has demonstrated unparalleled adaptability to these high-performance materials, creating intricate components with superior strength and durability.
  • Handling Composite Challenges: Composites pose unique challenges in machining due to their heterogeneous nature. With its precision-focused approach, internal turning has emerged as a reliable solution for crafting components from advanced composite materials. The ability to navigate the complexities of composites underscores its significance in contemporary manufacturing.

External Turning Technological Strides

Embracing technological strides is at the core of the surface turning process. As the industry surges forward, external turning keeps pace by integrating real-time monitoring and adaptive tooling, thus elevating its capabilities to new heights.

  • Real-Time Monitoring for Precision Assurance: The integration of real-time monitoring systems ensures that every cut adheres to the predetermined precision standards. Continuous feedback allows for instant adjustments, mitigating deviations and enhancing the overall accuracy of external turning procesos.
  • Adaptive Tooling for Dynamic Machining: External turning‘s embrace of adaptive tooling signifies a shift from static methodologies to dynamic machining approaches. Tools that can adapt to changing conditions in real-time optimize tool life, reduce wear, and contribute to the efficiency of the entire machining process.
  • Predictive Maintenance for Operational Continuity: Predictive maintenance, powered by data analytics and machine learning, has become a cornerstone in outer surface turning. By anticipating tool wear and potential issues, machinists can proactively address concerns, ensuring uninterrupted operations and prolonged tool life.
  • AI-Driven Machining for Enhanced Efficiency: Artificial Intelligence (AI) has woven its way into external turning, offering intelligent insights into machining processes. AI-driven machining optimizes toolpaths, cutting parameters, and overall efficiency, maximizing productivity while maintaining stringent quality standards.

Prototool: Your Professional Manufacturing Ally

As manufacturers grapple with the intricacies of modern components, Prototool emerges as the beacon of expertise, offering professional CNC manufacturing solutions that transcend the ordinary.

So, if you’re facing the challenges of chip evacuation, tool accessibility, and intricate geometries, our professionals at Prototool have meticulously honed their craft to address these challenges head-on.

Here, we ensure that your components are manufactured and crafted with precision. Whether it’s mastering internal turning, navigating confined spaces with finesse, or efficiency-driven external turning, our CNC manufacturing and injection molding solutions are tailored to exceed expectations.

Contact us today for more details and assistance.

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado de rampas
Fresado por inmersión
Milli periféricong
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Internal Turning vs. External Turning: Understanding the Difference and Usage appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/internal-turning-vs-external-turning/feed/ 0
Más allá de lo básico: Exploración del torneado cónico avanzado en el mecanizado https://prototool.com/es/taper-turning/ https://prototool.com/es/taper-turning/#respond Mon, 11 Dec 2023 02:25:03 +0000 https://prototool.com/?p=15897 Beyond Basics: Exploring Advanced Taper Turning in Machining
Prototool

Explore el torneado cónico en tornos, incluyendo cálculos, métodos y técnicas clave para conseguir piezas de alta calidad en la fabricación CNC.

The post Beyond Basics: Exploring Advanced Taper Turning in Machining appeared first on Prototool written by Prototool.

]]>
Beyond Basics: Exploring Advanced Taper Turning in Machining
Prototool

Operación fundamental realizada en un torno, torneado cónico es un arte que orquesta una sutil danza de dimensiones a lo largo de una pieza cilíndrica.

En este intrincado proceso, el diámetro, antes uniforme, se transforma con gracia en una forma cónica, desvelando una meticulosa creación en la que uno de los extremos ostenta un diámetro mayor que el otro.

En esencia, el torneado cónico es una historia de ángulos, en la que el recorrido de la herramienta de corte ocupa un lugar central. El ajuste del ángulo se convierte en la batuta del maestro, que dicta la sinfonía de las velocidades de conicidad.

Un ángulo más pronunciado provoca una rápida metamorfosis del diámetro, mientras que un ángulo más suave coreografía una transformación más gradual. Para ayudarle a entender mejor, este artículo explorará técnicas de torneado cónico y operaciones de torno en profundidad. Siga leyendo para saberlo todo.

piezas acabadas mediante tecnología de torneado cónico

Cómo funciona el torneado cónico en una máquina de torno

La máquina de torno, a menudo llamada la columna vertebral del mecanizado, ha evolucionado significativamente, dando lugar a avanzados centros de torneado CNC que presumen de una precisión y exactitud excepcionales. A pesar del auge de las modernas máquinas CNC, la máquina de torno convencional sigue siendo muy utilizada, valorada por su rentabilidad en los talleres mecánicos de todo el mundo.

Cómo funciona el torneado cónico en una máquina de torno

Importancia del torneado cónico

Torneado cónicoLa conicidad, una operación fundamental en un torno, tiene una inmensa importancia en la fabricación. Las conicidades son cruciales para crear ajustes ajustados y precisos, especialmente al unir dos componentes.

Los fabricantes reconocen la importancia de torneado cónico precisode la UE, lo que la convierte en un elemento básico en diversos procesos de producción.

Evolución de las máquinas de torno

La evolución de las máquinas de torno ha allanado el camino para torneado cónico sin soldaduraincluso en tornos CNC. Incorporando torneado cónico en un torno, ya sea tradicional o CNC, ofrece una experiencia fácil de usar tanto para torneros como para torneros.

Variables clave en el torneado cónico CNC

Implica comprender las variables esenciales del proceso. La orientación de la fresa, el avance, la profundidad de corte y la velocidad de corte son los principales elementos que entran en juego.

El conjunto de estas variables determina la precisión y el éxito de la operaciones en un torno CNC.

La fórmula del torneado cónico CNC

El núcleo de Los cálculos giran en torno al ángulo de conicidad (alfa).

Cuando se trata de Taper Per Foot (TPF), debe utilizar la fórmula:

Alfa = arctan(TPF/12).

El paso siguiente consiste en calcular el radio (r) en cada punto del recorrido del cono. El radio en cualquier punto "x" del recorrido del cono viene determinado por:

r = r0 - (x TPF).

Aquí, `r0′ representa el radio inicial, y `x' significa la distancia recorrida a lo largo de la longitud del cono.

El cálculo incorpora la relación para máquinas CNC con valores incrementales:

x = r0/F (velocidad de avance).

Esta expresión sirve como pauta general, arrojando luz sobre el comportamiento de la máquina en diversas condiciones de trabajo. La comprensión de estos cálculos capacita a los maquinistas para navegar por las complejidades de Torneado cónico CNC con precisión y confianza.

Tipos de métodos de torneado cónico

1. Método de ajuste del contrapunto

Aplicabilidad

El método Tailstock Set-Over es una técnica especializada adecuada para la elaboración de ángulos superiores pequeños, proporcionando una solución meticulosa para el mecanizado de precisión de perfiles cónicos. Los maquinistas suelen utilizar este método cuando se trata de componentes intrincados que exigen precisión.

Limitación

A pesar de su precisión, este método se limita únicamente a conos exteriores, por lo que es adecuado para situaciones en las que sólo es necesario conificar la superficie exterior. Esta limitación subraya la importancia de elegir el método adecuado para los requisitos específicos de mecanizado.

Procedimiento

  • Ajuste de la alineación: Inicie el proceso ajustando cuidadosamente el contrapunto desde su posición normal. Este paso garantiza que el contrapunto se ajuste de forma que se alinee con los requisitos de conicidad.
  • Cálculo de la compensación: La precisión se mantiene calculando el desplazamiento mediante la fórmula O = (Conicidad × L)/2000. Este cálculo es crucial para lograr la conicidad deseada con precisión.
  • Torneado cónico exterior: Ejecutar el programa externo torneado cónico con el mecanismo de sujeción aflojado para el desplazamiento. Este enfoque controlado garantiza que el producto final cumpla los requisitos de conicidad especificados.
  • Consejos de maquinista: El dominio de este método desbloquea la precisión del cono exterior y facilita un avance motorizado para un mecanizado eficaz. Los mecanizadores pueden aprovechar esta característica para lograr un mecanizado suave y controlado. proceso de torneado cónico.
Torno que trabaja el torneado cónico

2. Método de reposo compuesto

Aplicabilidad

El método Compound Rest se presenta como una técnica versátil adecuada para la elaboración de conos pequeños y empinados, mostrando excelencia en el mecanizado en diversas aplicaciones. Los mecanizadores suelen recurrir a este método cuando tienen que crear diversos perfiles cónicos.

Procedimiento

  • Configuración de descanso compuesto: Coloque el apoyo compuesto en un ángulo específico, alineándolo con precisión con la línea central de la pieza de trabajo. Este paso sienta las bases para torneado cónico preciso.
  • Alineación de herramientas: Bloquee el apoyo compuesto en su posición, asegurándose de que la herramienta de corte esté alineada con precisión en el centro para obtener resultados óptimos. Esta alineación meticulosa es fundamental para lograr la conicidad deseada.
  • Torneado cónico: Consiga un torneado cónico girando manualmente el mango del apoyo compuesto. Este enfoque práctico permite a los operarios mantener el control y la precisión durante el torneado.
  • Técnicas de torneado: Este método hace girar las conicidades internas y externas, con el ángulo de reposo compuesto calculado por Tan θ = (D-d)/(2L). Este cálculo subraya la importancia de la precisión en técnicas de torneado.

3. Método de fijación de torneado cónico

Aplicabilidad

En Torneado cónico El accesorio es una herramienta de precisión diseñada para los tornos modernos, que garantiza precisión de mecanizado en diversos operaciones de torno. Los maquinistas aprovechan este accesorio para manipular una gran variedad de torneado cónico escenarios con eficacia.

Procedimiento

  • Configuración de anexos: Montar el accesorio detrás del carro, mostrando su adaptabilidad y pertinencia en la moderna operaciones de torno. Esta configuración permite una integración perfecta con el torno.
  • Sujeción de la pieza: Sujete la pieza entre centros o en un mandril mientras el accesorio facilita el torneado cónico sin desplazamiento del contrapunto. Esta flexibilidad en la sujeción de la pieza aumenta las posibilidades de uso del implemento.
  • Barra guía giratoria: Gire la barra guía en un ángulo de 10°, mostrando la capacidad del accesorio para manejar fácilmente diferentes ángulos de conicidad. Los operarios pueden ajustar la barra guía para adaptarse a diferentes requisitos de conicidad.
  • Dominio del torneado cónico: Los profesionales pueden conseguir con este accesorio conicidades tanto externas como internas, manteniendo la alineación de los centros de torno. El Torneado cónico La fijación se convierte en una herramienta magistral en el repertorio del maquinista.

4. Método Form Tool

Aplicabilidad

El método de herramienta de forma, con su herramienta de forma recta, es una técnica meticulosamente diseñada para conos de longitud corta, que ofrece precisión en metodologías de torneado. Los mecanizadores emplean a menudo este método para componentes que exigen conicidades cortas y bien definidas.

Procedimiento

  • Configuración de la herramienta Formulario: Ajuste una herramienta de forma recta con un ángulo de conicidad para la forma deseada en la pieza de trabajo, haciendo hincapié en la necesidad de precisión. Los maquinistas deben elegir cuidadosamente la herramienta de forma para que coincida con los requisitos de conicidad.
  • Operación de alimentación directa: Proporcionar un avance directo en el trabajo para garantizar la creación de una forma definida. Esta operación de avance directo requiere un enfoque controlado para evitar errores en el perfil cónico.
  • Consideración de la duración: Debido a las limitaciones de este método, se recomienda para conos de longitud corta, lo que subraya la importancia de comprender su alcance. Las consideraciones de longitud desempeñan un papel crucial en el éxito del torneado cónico.
  • Mecanizado de precisión: Aunque es eficaz, los maquinistas deben tener en cuenta que no se genera más fuerza, por lo que es adecuado para escenarios de mecanizado específicos en los que la precisión de corta longitud es primordial.

5. Método de alimentación combinada

Aplicabilidad

El método de alimentación combinada es un torneado avanzado técnica que utiliza tanto avances longitudinales como transversales para el movimiento diagonal de la herramienta y muestra un alto nivel de precisión de mecanizado. Los maquinistas utilizan este método cuando buscan perfiles cónicos intrincados con torneado avanzado requisitos.

Procedimiento

  • Compromiso de alimentación simultánea: Enganche simultáneo de los avances longitudinal y transversal, permitiendo que la herramienta se desplace por una trayectoria diagonal. Este acoplamiento simultáneo añade un nivel de complejidad adecuado para escenarios avanzados.
  • Ajuste de la trayectoria: Ajustar los avances y las marchas para optimizar la trayectoria de la herramienta, lo que subraya la necesidad de realizar ajustes meticulosos para mecanizado de precisión. Los mecanizadores deben calibrar cuidadosamente las velocidades de avance para conseguir la conicidad deseada.
  • Metodologías de giro: Este método avanzado muestra el potencial de la combinación de avances para el movimiento diagonal de la herramienta, destacando la importancia de los ajustes de avance para lograr precisión en metodologías de torneado. Los maquinistas deben emplear metodologías avanzadas de torneado para dominar esta técnica.

Conclusión

Dominio de Torneado cónico CNC se convierte en la clave para desbloquear la eficiencia y la producción de piezas complejas y de alta calidad adaptadas a diversas industrias. Las complejidades de este proceso ponen de relieve el papel fundamental que desempeñan los cálculos precisos en la consecución de los resultados deseados, por lo que es imprescindible que los fabricantes comprendan estos cálculos.

En conclusión, aunque Torneado cónico CNC puede parecer complicado, un conocimiento profundo y la práctica pueden mejorar la eficacia y aumentar la precisión en sus tareas de mecanizado. A medida que avanza la fabricación, la precisión sigue siendo una prioridad absoluta. En es un claro ejemplo de la dedicación del sector a la alta calidad. mecanizado.

En Prototoolestamos preparados para ser su socio de confianza en Fabricación CNC servicios. Nuestro compromiso mecanizado de precisión y técnicas avanzadas de torneado nos sitúa como maestros en el oficio. Por ello, siempre estamos aquí para guiarle a través del eficiente proceso de torneado cónico para conseguir excelencia en el mecanizado. ¡Feliz mecanizado!

Método de giroMétodo de fresado
Torneado interior y exterior
Torneado cónico
Fresado de hombros
Fresado lateral
Fresado frontal
Fresado de rampas
Fresado por inmersión
Fresado periférico
Fresado helicoidal
Fresado de ranuras
Fresado vertical y fresado horizontal
Fresado convencional y fresado de ascenso

The post Beyond Basics: Exploring Advanced Taper Turning in Machining appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/taper-turning/feed/ 0
Fresado helicoidal: Guía detallada https://prototool.com/es/helical-milling/ https://prototool.com/es/helical-milling/#respond Tue, 21 Nov 2023 03:28:56 +0000 https://prototool.com/?p=15463 Helical Milling: An In-Depth Guide
Prototool

Conozca las aplicaciones del fresado helicoidal en el taladrado, el fresado de contornos y el mecanizado de roscas, y cómo mejora la precisión en el mecanizado de metales.

The post Helical Milling: An In-Depth Guide appeared first on Prototool written by Prototool.

]]>
Helical Milling: An In-Depth Guide
Prototool

Introduction to Helical Milling

Helical milling is a machining process where the tool path resembles a spring. During this process, the herramienta de corte follows a programmed helical path to progressively cut the workpiece, achieving the desired dimensions. The choice of tool is crucial in helical milling. Generally, the tool diameter is selected to be 40% to 60% larger than the milling size and the helical radius of the workpiece. The size of the non-cutting center of the tool significantly affects the tool’s cutting life. The Z-axis feed, or the depth of cut, is typically around 20% of the normal cutting depth, but this can vary depending on the material and specific machining conditions. Helical milling is often used for initial drilling and hole-making, especially in softer materials. However, it’s less preferred for machining steel components due to rapid tool wear, which significantly affects tool life.

helical milling process

Contour Milling

Traditionally, slot milling with a keyway mill is used for machining cavities, which is less efficient. When using fresas for cavity machining, the efficiency is higher. However, direct vertical plunging with an end mill can cause significant damage to both the tool and the workpiece. To address this, Mecanizado CNC often employs helical milling or ramping down techniques. Programming the tool to spiral down along the cavity contour improves machining efficiency and extends tool life.

Hole Machining Technology Analysis

In helical milling, the spindle rotation of the machine tool is adjusted for effective engagement. The motion structure is modified according to the central rotation position for specialized machining methods. The process parameters of helical milling, such as cutting speed, are controlled to ensure stability during cutting. The cutting tool may experience significant pressure, and after machining, the workpiece’s precision is assessed to determine the tool’s central point and cutting trajectory. Adjustments are made based on the cutting path and spiral line position. The entire machining state is adjusted for controlled operations, combining actual cutting standards and tool modes. This approach saves machining time, improves process quality, reduces the rate of defects, and enhances the overall efficiency of the component.

helical path in helical milling

Thread Machining

Traditional thread milling methods primarily use thread mills to cut components, ensuring precision in the machining process. With the advancement of CNC technology, three-axis coordinated machine control methods are used for thread cutting. This modern approach to thread machining offers significant advantages in terms of precision, efficiency, and cost over traditional methods. It also avoids interference from thread structure, direction, and spacing between adjacent threads. In mechanical machining, if the thread mill is directly used to create various rotational structures, traditional turning methods can be employed for complex structures. However, CNC cutting offers greater precision and allows for effective adjustment of thread diameter sizes, significantly improving the accuracy and efficiency of the machining process.

The post Helical Milling: An In-Depth Guide appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/helical-milling/feed/ 0
Desbloquear la precisión: El arte del superacabado en la fabricación https://prototool.com/es/super-finishing/ https://prototool.com/es/super-finishing/#respond Tue, 21 Nov 2023 02:22:14 +0000 https://prototool.com/?p=15459 Unlocking Precision: The Art of Super-Finishing in Manufacturing
Prototool

Conozca las aplicaciones de los superacabados, desde la industria aeroespacial a la médica, y comprenda cómo revolucionan la precisión.

The post Unlocking Precision: The Art of Super-Finishing in Manufacturing appeared first on Prototool written by Prototool.

]]>
Unlocking Precision: The Art of Super-Finishing in Manufacturing
Prototool

Super-finishing is a specialized technique known for its exceptional precision and is vital for enhancing component quality and performance. Originating around the 1930s, this method was developed to refine a component’s surface finish while improving micro-contour accuracy, including roundness, straightness, and cylindricity.

This article will take you through the intricate process of super-finishing, revealing its pivotal role in achieving mirror-like finishes and elevating performance across industries beyond racing motorcycles.

Let’s start exploring!

Understanding the Versatility of Super-Finishing

Super-finishing is a game-changer not limited to a single industry. It holds remarkable potential across various sectors, from medical to aerospace.

Here, we will explore the broad applications of super-finishing, which extends beyond automotive parts to encompass intricate components such as hip and spine implants and critical aerospace elements, including turbine y landing gear parts.

Super-Finishing’s Universal Application

This remarkable technique can be used in virtually any OD (outer diameter) application where precision matters, involving removing minute stock amounts, typically ranging from 0.002 to 0.005 mm from the diameter.

While it’s most commonly associated with steel, super-finishing isn’t limited to this material; it extends to exotic alloys, titanio, aluminio, and even delicate substances like glass and ceramic.

The Cold Material Process

One of the standout features of super-finishing is that it’s a cold material process. It eliminates the thermally damaged layer left behind by previous abrasive machining operations such as grinding. The absence of this damaging thermal effect significantly enhances component durability.

Extending the Life of Components

To put this into perspective, consider the bearing surfaces of engine crankshafts or camshafts. Without super-finishing, these components would be stressed and worn, leading to engine breakdowns every 20,000-30,000 miles.

However, with super-finishing, the longevity of today’s engines increases significantly, with lifespans often reaching 200,000-300,000 miles.

The Magic of Super-Finishing

The secret to super-finishing’s effectiveness lies in the depths of the cut. Traditional turning or grinding processes might remove material depths ranging from 50-100 microns or more, generating substantial heat.

Yet, super-finishing works differently, removing just 1-2 microns of stock on the radius while requiring significantly less energy. This cold ultra-precision machining process revolutionizes precision and durability, making it an indispensable technique in modern manufacturing.

Your Guide to Selecting the Right Finishing Process

En finishing processes, the best choice varies depending on the particular use and the results you want to achieve; there’s no single solution that works for everything. To make a well-informed decision, it’s crucial to understand the differences between common ultra-fine finishing methods:

  • Flat Lapping: This technique is tailored for refining flat surfaces by employing loose abrasives. It significantly improves surface finish while also enhancing part flatness. So, if your application requires precisely flat surfaces, flat lapping is an excellent option.
  • Honing: Honing focuses on enhancing the finish of internal diameters using fixed abrasives. Unlike many other processes, honing is a cold process that generates no heat. This results in improved surface finish and micro-contour accuracy. It’s the method of choice when you need precise interior finishing without the risk of heat-induced damage.
  • Microfinishing/ Superfinishing: For exterior diameters and faces, microfinishing and superfinishing come into play. These methods employ fixed abrasives and, importantly, are also cold processes. The primary objective is to enhance both surface finish and micro-contour accuracy. Therefore, these processes are invaluable when you require precise, high-quality surface finishing for external features.
  • Pulido: Polishing, on the other hand, concentrates on refining outside features using loose abrasives. While it provides flexibility in various applications, it’s not a cold process, and heat generation can be a concern. Polishing achieves a commendable surface finish but may compromise micro-contour accuracy in the process. It is ideal when aesthetics are your top priority, mainly if part geometry isn’t critical.
  • Superfinishing with Tape: This approach combines the precision of superfinishing with the advanced “D-flex” band technology to achieve consistent results, even when dealing with varying diameters. Using tape in superfinishing ensures that you can maintain precision throughout the process.

What is the Stream Finishing Process?

Stream finishing is an ultra-precision machining method that employs fine-grain media with a high density, typically much smaller than those used in conventional vibratory-finishing processes.

This specialized process revolves around immersing workpieces, either singly or in groups, within a chamber filled with abrasive media. The abrasive media combines tensides and corrosion-protective materials, resulting in a mixture that resembles wet sand.

Here, the key to stream finishing is the intricate interaction between the workpiece and the abrasive media. The workpiece or workpieces are mounted on a workpiece holder and immersed in the abrasive media within the chamber.

As a result, the process is executed at specific angles and rotations. However, keep in mind that the speed of both the workpiece and the abrasive media, as well as the immersion angle of the parts, are all highly dependent on the specific application.

8 Key Benefits of Stream Finishing

1. Exceptional Surface Smoothness

Stream finishing can achieve surface smoothness values as fine as 0.01-micron Ra, which is particularly suitable for high-precision components like gears. This remarkably smooth surface reduces friction, leading to less heat generation and noise during operation.

2. Extended Component Life

One of the significant advantages of stream finishing is its ability to eliminate the need for the prolonged running-in of engines and gearboxes. This not only extends the life of the components but also reduces oil contamination. In many cases, it has led to a remarkable increase in the interval between oil changes.

3. Significant Reduction in Heat and Noise

By significantly reducing heat generation and noise emissions compared to conventional grinding methods, stream finishing is especially valuable for critical applications. It not only enhances performance but also contributes to a quieter and cooler operational environment.

4. Minimized Micropitting

Stream finishing effectively reduces micro pitting, a common issue with gear wheels, often leading to premature wear and damage. Micropitting occurs when the lubricating film between gear teeth breaks down at localized points. This is a critical benefit for components subject to high wear and friction.

5. Rapid Processing for High-Value Parts

Stream finishing is an efficient process, particularly suited for high-value parts. Unlike mass finishing methods that may take hours, ultra-fine finishing typically takes a minute or less to achieve the desired results.

6. Two-Stage Processing: Grinding and Polishing

The process can be divided into two stages, beginning with a grinding process and followed by polishing. The initial stage removes material, while the polishing step further refines the surface. This combination leads to a reduction in peak heights while maintaining essential surface valleys for improved lubrication.

7. Attractive, Polished Appearance

Stream finishing provides components with an attractive, mirror-like appearance. This holds even for intricate and challenging areas that are often difficult to reach with other methods.

8. Enhanced Performance and Durability

In practical applications, stream finishing has demonstrated a considerable increase in performance, typically around 5%, offering benefits like quicker power delivery and cooler running. Importantly, this process enhances the lifespan of components, reducing wear and the need for costly maintenance and servicing.

Super Finishing vs. Stream Finishing: A Comparison

Superfinishing and stream finishing are two distinct surface enhancement techniques employed in manufacturing. While both aim to improve surface quality, they differ significantly in their methods and applications.

FeatureSuper FinishingStream Finishing
Retirada de materialMinimal material removal (1-2 microns)Minimal material removal
Heat GenerationCold process, minimal heatCold process, minimal heat
Surface SmoothnessAchieves very smooth surfacesAchieves smooth surfaces
Ideal ApplicationsHigh-precision parts, aerospace, bearingsHigh-value parts, precision-critical tasks
BenefitsExtends component life, reduces frictionExtends component life, reduces micro pitting

Both super finishing and stream finishing offer cold material processes, preserving the integrity of components and enhancing surface quality. However, the choice between them depends on the specific application, required surface smoothness, and the level of precision necessary for the components.

Conclusión

When considering super-finishing or other machining and finishing processes, it’s vital to evaluate the specific needs of your project. Think about the level of precision, the surface quality required, and the performance expectations of the components.

For those seeking professional services in Mecanizado CNC y moldeo por inyección, look no further than Prototool. Prototool is known for its outstanding performance and dedication to accuracy, providing various manufacturing options. Whether you require super-finishing, micro-finishing, or any other high-finish machining service, Prototool is your trusted partner in unlocking the full potential of your manufacturing projects.

Choose precision, choose quality—choose Prototool for all your CNC machining and injection molding needs. Your path to manufacturing excellence begins here.

The post Unlocking Precision: The Art of Super-Finishing in Manufacturing appeared first on Prototool written by Prototool.

]]>
https://prototool.com/es/super-finishing/feed/ 0