Prototool https://prototool.com/de/ Prototool Offizielle Website Thu, 25 Jan 2024 14:18:04 +0000 de-DE stündlich 1 https://wordpress.org/?v=6.6 https://prototool.com/wp-content/uploads/2022/05/prototool-logo-small.png Prototool https://prototool.com/de/ 32 32 Boss-Design: Schlüsselelemente, Gestaltungsrichtlinien, häufige Probleme und Lösungen https://prototool.com/de/boss-design/ https://prototool.com/de/boss-design/#respond Thu, 25 Jan 2024 14:14:16 +0000 https://prototool.com/?p=17241 Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions
Prototool

Verstehen des Boss-Designs beim Spritzgießen mit Schwerpunkt auf Schlüsselelementen, Designrichtlinien und Lösungen für Kunststoffformteile.

The post Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions appeared first on Prototool written by Prototool.

]]>
Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions
Prototool

Spritzgießen is a cornerstone in plastic parts’ fabrication, playing a pivotal role in diverse industries. From medizinische Ausrüstung zu automotive interiors, electronic housings zu everyday housewares, and beyond, the ubiquity of injection molded parts is undeniable.

The process involves melting raw plastic in an Spritzgießmaschine, shaping it within a mold, and allowing it to cool and solidify, producing intricately designed components.

The complexity of plastic parts design demands meticulous attention to various factors, including functional requirements, material selection, and structural considerations. Among the key elements crucial to this design process are Wandstärke, draft, textures, ribs, and, notably, Chefs.

boss design for injection molded part

Serving as points of attachment and assembly, bosses are commonly cylindrical projections with strategically placed holes for screws or threaded inserts. Ensuring their effective design is paramount, requiring generous base radii for strength and ample draft for seamless part removal from the mold.

This blog delves into the fundamental guidelines for boss design in injection molded parts, aiming to enhance moldability, extend mold life, increase part operational longevity, and reduce manufacturing costs.

Boss Design: A Brief Overview

In plastic molded part design, a crucial element demanding attention is the concept of boss design. What precisely constitutes a boss within molded parts? At its core, a boss is a structural feature—a cylindrical projection featuring strategically placed holes within molded components.

The primary function of bosses encompasses providing attachment points for screws, fasteners, or other essential assembly hardware. These features play a pivotal role in facilitating smooth assembly processes while ensuring the final product’s structural integrity.

Understanding and mastering boss design is indispensable for optimizing the functionality and manufacturability of plastic molded parts.

Boss Design Elements

Effective boss design is pivotal for the structural integrity of molded parts. To achieve optimal strength without compromising the overall design, several key elements demand careful consideration:

Thickness Ratio

The wall thickness of bosses should not exceed 60 percent of the main wall thickness of the part. Striking this balance is crucial to ensure the boss’s strength without compromising the molded part’s overall structural integrity.

 Base Radius Ratio

Stability and warp prevention during manufacturing rely heavily on the base radius ratio. A base radius should be at least 25 percent of the main wall thickness, providing a robust foundation. This corresponds to a base diameter of at least 50 percent, contributing to the overall resilience of the boss.

Connection to Adjacent Walls

Bosses should always be connected to adjacent walls using ribs or gussets. This strategic connection helps avoid the creation of thick sections, minimizing the risk of warping during the manufacturing process. Thoughtful design ensures a seamless integration of bosses into the overall part structure.

 Fillet Ratio at the Base

As a point of attachment between two surfaces, the base of bosses requires a fillet ratio for added strength. This preventive measure safeguards against potential stresses induced by the insertion of screws or other hardware, ensuring resilience and minimizing the risk of fracture.

Incorporating a fillet ratio is a critical step in enhancing the longevity and reliability of the boss within the molded part.

typical bosses in a plastic part design

10 Critical Boss Design Guidelines for Molded Plastic Parts

1. Minimum Radius at Base of Boss

Implementing a fillet with a specific minimum radius at the base of a boss is imperative to mitigate stress concentration. This radius is strategically placed where the boss intersects with the nominal wall, effectively reducing stress and enhancing overall structural integrity.

While the radius provides strength, it should be carefully controlled to avoid thick sections, balancing structural support and manufacturability. The recommended range for this base radius is 0.25-0.5 times the nominal wall thickness, ensuring optimal performance during the molding process.

2. Spacing between Bosses

The strategic placement of bosses is crucial for preventing the creation of thin areas that pose challenges in the cooling process. Maintaining a suitable spacing between bosses, ideally at least 2 times the nominal wall thickness, is essential for efficient cooling and quality improvement.

Proximity between bosses can lead to difficulties in cooling, affecting productivity and mold life. Proper spacing is key to ensuring uniform cooling and enhancing the longevity of the mold.

3. Radius at Base of Hole in Boss

Introducing a radius at the base of the hole in a boss serves multiple purposes, including avoiding sharp corners und Spannungskonzentration. This design feature aids in the molding process and contributes to stress reduction, ensuring the longevity of the molded part.

The recommended radius at the base of the hole in the boss falls within the range of 0.25 to 0.5 times the nominal wall thickness, striking a balance between manufacturability and stress reduction.

4. Minimum Draft for Boss OD

Ensuring an easy ejection from the mold requires a suitable draft on a boss’s outer diameter (OD). This draft, typically greater than or equal to 0.5 degrees, facilitates a smooth demolding process.

An adequate draft on the boss’s outer surface not only streamlines manufacturing but also contributes to the efficiency of the injection molding process, minimizing production challenges.

5. Minimum Draft for Boss ID

Design considerations often necessitate a minimum taper on a boss’s inner diameter (ID) for proper engagement with fasteners.

A draft greater than or equal to 0.25 degrees on the inner walls of the boss is recommended, ensuring seamless demolding and establishing a secure fit for fasteners. This draft on the ID contributes to both the manufacturability and functionality of the final molded part.

6. Boss Height to OD Ratio

Striking the right balance in the boss’s height relative to the outer diameter (OD) is crucial for preventing undesirable material mass und thick sections at the base.

With a recommended height of less than three times the outer diameter, this design guideline supports effective cooling, reduced cycle time, and dimensional accuracy for cored holes. A proper height-to-OD ratio is essential for optimal part performance.

7. Minimum Radius at Tip of Boss

To endure varying loadings during service conditions, providing a fillet with a specific minimum radius at the tip of a boss is essential. This design feature effectively reduces stress concentration and enhances the overall durability and life of the molded part.

The recommended minimum radius at the tip contributes to the overall resilience of the boss under different loading scenarios.

8. Chamfer at the Top of Boss

Incorporating a chamfer at the top of a boss is a beneficial lead-in for fasteners during the assembly process. This design feature ensures smooth engagement and alignment during assembly, streamlining the manufacturing process.

The chamfer at the top of the boss contributes to the ease of assembly and the overall quality of the final molded part.

9. Wall Thickness of Boss

Maintaining an ideal wall thickness for bosses, approximately 60 percent of the nominal wall, is critical to prevent issues such as voids, Einfallstellen, and extended cycle times.

While exceeding this thickness can lead to manufacturing challenges, adjusting the wall thickness may be considered for bosses in non-visible areas, allowing for increased stresses imposed by self-tapping screws. Striking the right balance in wall thickness is essential for optimal part performance.

10. Standalone Boss

Implementing coring for bosses and other thick sections is recommended to ensure uniform material flow and load distribution. Attaching the boss to the sidewall enhances rigidity and material flow, contributing to the overall structural integrity of the molded part.

This design consideration is crucial for achieving improved part performance and manufacturability.

boss design in the proE

The Challenges and Solutions in Boss Design

Improper boss design poses challenges that can significantly impact the aesthetics and functionality of molded parts. What are these challenges? How can you solve them? Let’s explore below.

Causing Sink Marks and Warpage

Challenge

One of the primary challenges in boss design is the potential for sink marks and warpages. When bosses are inadequately designed—either excessively thick or lacking proper reinforcement—they cool at different rates than the surrounding areas.

This temperature disparity can lead to unsightly sink marks, creating depressions on the surface and warpage, causing the part to deviate from its intended shape.

Solution

Addressing this challenge involves optimizing the wall thickness of bosses and incorporating reinforcement ribs. Proper wall thickness ensures uniform cooling, minimizing the risk of sink marks and warpage. Reinforcement ribs are crucial in distributing stress evenly across the boss, preventing localized deformation and enhancing overall part integrity.

Impact on Cooling Time and Cycle Time

Challenge

Bosses directly influence cooling and cycle times during the molding process. In cases where bosses are excessively thick or poorly designed, they may trap heat, resulting in prolonged cooling and cycle times.

This not only slows down the manufacturing process but also leads to increased production costs.

Solution

Mitigating the impact on cooling and cycle times involves strategic adjustments to the cooling channels within the mold. Optimizing the overall mold design, with particular attention to the placement of bosses, can minimize the adverse effects on cooling and cycle times.

Limited Material Selection and Compatibility

Challenge

The material selected for molded parts significantly influences boss design. Choosing an incompatible material can subject the boss to excessive stress, potentially leading to cracking or failure.

Solution

Overcoming this challenge revolves around selecting the right material for boss design. Opt for a material with the necessary strength, stiffness, and chemical resistance to ensure the boss can withstand the loads and environmental conditions.

Material selection is crucial for achieving durable and reliable boss designs in molded parts.

high boss in the design

Schlussfolgerung

Bosses in injection molded parts serve as crucial features, acting as anchors, supports, and facilitators of reliable assembly. These components play a crucial role in ensuring the final product’s structural integrity and optimal performance.

Adhering to fundamental design guidelines is imperative to produce plastic parts with robust, functional, and visually appealing bosses.

For those seeking top-quality molded parts with a dependable boss design, Prototool emerges as the optimal choice. Our Spritzgießdienstleistungen are backed by an experienced team committed to meeting your specific requirements. Want to know more? Get in touch today!

The post Boss Design: Key Elements, Design Guidelines, Common Problems & Solutions appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/boss-design/feed/ 0
Strategien für erfolgreiches Produktdesign mit den richtigen Materialien https://prototool.com/de/successful-product-design-with-the-right-materials/ https://prototool.com/de/successful-product-design-with-the-right-materials/#comments Sun, 21 Jan 2024 15:10:47 +0000 https://prototool.com/?p=17233 Strategies for Successful Product Design with the Right Materials
Prototool

Lassen Sie uns die Rolle der Materialauswahl für das Produktdesign erörtern, wobei der Schwerpunkt auf der Zusammenarbeit mit den Gießern für ästhetisch ansprechende Produkte liegt.

The post Strategies for Successful Product Design with the Right Materials appeared first on Prototool written by Prototool.

]]>
Strategies for Successful Product Design with the Right Materials
Prototool

Haben Sie sich jemals gefragt, was die Designer auszeichnet, die die Spritzgussteile? Es gibt eine ganze Liga von Experten, die nicht nur Teile entwerfen, sondern sie auch für die Spritzgießer. Während wir in die Welt des Spritzgießens eintauchen, wo Präzision auf Produktion trifft, entschlüsseln wir eine entscheidende Strategie für den Erfolg: die Zusammenarbeit mit Ihrem Spritzgießer.

Das ist nicht der typische Spritzgießen Wir erforschen den Sweet Spot, an dem die Feinheiten des Designs und das Fachwissen der Gießerei aufeinandertreffen. Wenn Sie also das Beste aus Ihrer Zusammenarbeit mit dem Gießer herausholen möchten, um sicherzustellen, dass Sie bei der endgültigen Gestaltung und Verarbeitung der Produktion Ihres Produkts die richtigen Materialien wählen, ist dieser Artikel genau das Richtige für Sie.

plastic material selection for product design

Lesen Sie weiter und erfahren Sie alles über die Erstellung erfolgreicher Produktdesigns mit den richtigen Produktionsmitteln.

Wichtige Überlegungen für die Konstruktion von qualitativ hochwertigen Gussteilen

Bevor wir uns auf die komplizierte Reise der Gestaltung von Spritzgussteile für das Spritzgießen zu entwickeln, ist es von größter Bedeutung, die Bedeutung der wichtigsten Überlegungen zu verstehen. Das Verständnis dieser Überlegungen legt den Grundstein für einen kooperativen und effizienten Designprozess.

Durch die Vertiefung in die Nuancen der Berücksichtigung von Materialien bei der Produktgestaltung, kritische Toleranzen, Einfallstellenstählerne Sicherheitsbereiche, und Torstandortekönnen Designer potenzielle Herausforderungen bewältigen und ihre Entwürfe für eine erfolgreiche Produktion optimieren. Lassen Sie uns nun die einzelnen Aspekte im Detail betrachten:

Wesentliche Optionen und Konsequenzen

Verstehen Sie zunächst die Bedeutung der Materialüberlegungen für das Produktdesign bei der Gestaltung hochwertiger Formteile. Arbeiten Sie effektiv mit den Spritzgießern zusammen, indem Sie sich auf bestimmte Kunststoffe einigen - dies bildet die Grundlage für einen reibungslosen Produktionsprozess.

Collaborate effectively with molders by reaching a crucial agreement on specified resins

Stimmen Sie die Materialeigenschaften auf die Präferenzen Ihres Verarbeiters ab, um erhebliche Kosteneinsparungen zu erzielen. Wenn Sie es mit Hochleistungsharzen zu tun haben, sollten Sie sich mit Herausforderungen wie Viskosität, Glasgehalt und Kristallinität auseinandersetzen - diese Faktoren können die Designpräzision und Produktionseffizienz erheblich beeinflussen.

Kritische Toleranzen

Bei der Konstruktion von Spritzgussteilen ist die Beherrschung enge Toleranzen erfordert eine strategische Mischung aus Zusammenarbeit und Einsicht. Verstehen Sie die Faktoren, die die Toleranzabweichung beeinflussen, wie Materialien, Prozesssteuerung und Werkzeugkonstruktion.

Als Konstrukteur ist es wichtig, großzügige Toleranzen vorzusehen, wenn dies möglich ist, aber es gibt Fälle, in denen enge Toleranzen aus Gründen der Passform, der Funktion oder des Aussehens nicht verhandelbar sind. Sie sollten auch praktische Vorschläge für die Beibehaltung einer präzisen Toleranzkontrolle aufdecken, sei es durch Nachbearbeitungstechniken oder strategische Anschnittpositionen.

mastering tight tolerances requires a strategic blend of collaboration and insight

Darüber hinaus ist es wichtig, das Toleranzmanagement beim Spritzgießen zu verstehen, um optimale Passform, Funktion und Ästhetik zu gewährleisten.

Sinkende Markierungen

Das Erreichen kosmetischer Perfektion bei Spritzgussteilen ist ein ständiges Ziel, und ein Schlüsselelement, das es zu verstehen gilt, sind die Feinheiten der Einfallstellen. Verstehen Sie die Richtlinien, die das Maximum vorschreiben Wandstärke und ihre direkten Auswirkungen auf das Erscheinungsbild Ihres Designs.

Arbeiten Sie eng mit Ihrem Spritzgießer zusammen, um Herausforderungen zu bewältigen, die sich aus der Einführung von Rippen, Chefsund Entformungsschrägen. Um Einfallstellen vorzubeugen und zu beseitigen, sollten Sie Lösungen wie die Minimierung des Luftzugs, die Anpassung der Rippenhöhen und andere Konstruktionsmerkmale prüfen.

Wenn Sie diese Strategien anwenden, verbessern Sie die visuelle Attraktivität Ihrer Spritzgussteile und erreichen die begehrte kosmetische Perfektion.

Sichere Bereiche aus Stahl

Das Erreichen von Präzision bei der Konstruktion von Spritzgussteilen erfordert höchste Aufmerksamkeit, insbesondere in Bezug auf Schnapphaken, Ausrichtungsfunktionenund ineinandergreifende Teile. Verstehen Sie die Bedeutung von "stahlsicheren" Konstruktionsmerkmalen - sorgfältig geplante Abstände, die Anpassungen nach ersten Testschüssen ermöglichen.

Wenn Sie diese Voraussicht in Ihre Planung einbeziehen, vermeiden Sie Komplikationen und Verzögerungen, die mit Schweißen. Es ist wichtig, eng mit dem ausgewählten Gießer zusammenzuarbeiten und sich frühzeitig einzubringen, um Revisionen zu minimieren, kritische Abmessungen festzulegen und fundierte Entscheidungen über stahlsichere Bereiche zu treffen.

Dies gewährleistet einen rationellen Designprozess und ebnet den Weg für Präzision bei jedem Spritzgussteil.

Standort des Tores

Die strategische Platzierung von Anschnitten in Spritzgussteilen ist ein entscheidender Faktor, der verschiedene Eigenschaften beeinflusst. Erfahren Sie mehr über die Zusammenarbeit zwischen Designern, Spritzgießern und Werkzeugmachern bei der Festlegung der Anschnittposition.

Erkennen Sie die Auswirkungen, die die Platzierung von Gates auf Aussehen, Verzug, Toleranzen, Oberflächengüte und physikalische Eigenschaften. Moreover, you can challenge conventional norms and explore the role of mold flow simulations in guiding gate design, ensuring it doesn’t compromise part performance, appearance, or fit.

Tips for Successful Product Design with the Right Materials

Before we get into the details, let’s talk about why these considerations matter to your product design. Crafting a killer design isn’t just about looks. In fact, it’s also about making sure your creation looks good and performs exceptionally.

We’re talking about understanding material properties, being cost-savvy without compromising quality, ensuring your product can endure, and, of course, making it visually appealing. And hey, being eco-conscious is pretty cool too.

Now, let’s dive into key strategies to help you ace the material consideration in product design:

Identify Key Material Properties and How They Shape Your Design

Understanding material properties is like having the blueprint for effective product design. This strategy deeply delves into the intricacies of key material properties such as tensile strength, ductility, elasticity, and thermal conductivity.

This will help you learn how these properties shape your design process and influence your final masterpiece’s overall performance and durability.

Identify Key Material Properties and How They Shape Your Design

Examine the Cost Efficiency of Different Materials

While your creative spark fuels your design, this strategy gears you up for the practical side – cost efficiency. Take a guided tour through a comprehensive analysis of the cost efficiency of various materials.

Furthermore, it’s important to delve not only into initial costs but also into long-term considerations, arming yourself with the knowledge to make decisions that elevate product quality and sustainability.

Evaluate the Strength and Durability of Materials

As a designer, strength and durability are your trusty sidekicks. This strategy breaks down the evaluation process, walking you through tests for tensile and compressive strength, impact resistance, and fatigue.

Don’t forget to gain insights into the significance of understanding material strength, empowering you to select materials that endure and excel in diverse applications.

Consider How Materials Respond to Environmental Conditions

For you, crafting environmentally resilient designs is crucial. This strategy sheds light on how materials respond to specific environmental conditions. Choose materials that ensure longevity and functionality if your creation faces scorching temperatures or relentless UV radiation.

Once that’s done, you can seamlessly incorporate environmental considerations into your design process for end products that stand the test of time.

Analyze the Aesthetic Qualities of Materials

Beyond functionality, aesthetics are your playground. This strategy explores the impact of texture, color, finish, and pattern on consumer perceptions. 

It is also important to understand how aesthetic qualities influence your material consideration in product design, shaping the visual identity of your creation. From matte finishes to reflective surfaces, become a master in creating visually appealing and harmonious designs.

Investigate the Sustainability of Materials

As a designer, sustainability isn’t just a buzzword for you. Instead, it’s a design principle. This strategy emphasizes the importance of investigating the sustainability of materials.

Make sure to scrutinize material sourcing, production processes, and end-of-life disposal to make choices that align seamlessly with your environmental consciousness. You should also explore the versatility of sustainable materials, like bamboo, and play your part in creating a more eco-friendly design landscape.

Injection Molding Design Guide: Material Selection

Ultimately, choosing the right materials is a critical aspect of injection molding, influencing everything from product durability to cost-effectiveness.

In this article section, we’ll walk you through key considerations for material selection in product design, ensuring that your injection molding endeavors result in successful and efficient outcomes.

  • Appearance and Texture of Injection Molding Parts: Extend it way beyond functional – ensure the appearance and feel of your injection-molded parts. Learn how different plastics affect how surfaces look and feel. This matters a lot, especially when you want your products not just to work well but also look good.
  • Temperature Range and Cost Considerations: Temperature is a big deal in injection molding. Understand how to choose materials that can handle the right temperature. Plus, we’ll talk about costs – how to pick materials that fit your budget but still do the job. It’s all about finding that sweet spot between what works, lasts, and doesn’t break the bank.
  • Environmental Factors and Use Environment: Consider where your injection-molded parts will be used. Whether dealing with heat or tough conditions, the right material consideration in product design means your products can handle it. Get a grip on what keeps your products lasting and strong in different situations.

Injection Molding Design Guide: Part Design

Making great products with injection molding starts with smart design. This guide zooms in on how to create parts that work seamlessly with the injection molding process. From nailing down the basics of wall thickness to choosing materials that fit the bill, these tips help you design parts that rock in injection molding.

  • Wall Thickness Basics for Injection Molded Parts: What is the core of creating parts in injection molding? Knowing the basics of how thick your walls should be. To figure out the right thickness for different materials, check out the suggestions in the table below:
MATERIALRECOMMENDED WALL THICKNESS
ABS0.045 in – 0.140 in
Acetal0.030 in – 0.120 in
Acryl0.025 in – 0.500 in
Liquid Crystal Polymer0.030 in – 0.120 in
Long-Fiber Reinforced Plastics0.075 in – 1.000 in
Nylon0.030 in – 0.115 in
Polycarbonat0.040 in – 0.150 in
Polyester0.025 in – 0.125 in
Polyethylen0.030 in – 0.200 in
Polyphenylene Sulfide0.020 in – 0.180 in
Polypropylen0.025 in – 0.150 in
Polystyrene0.035 in – 0.150 in
Polyurethan0.080 in – 0.750 in

This comprehensive material chart serves as a practical tool, offering precise recommendations for wall thickness based on the material selected, ensuring a smooth and efficient injection molding process.

Schlussfolgerung

Mastering the art of material selection in product design is essential for successful injection molding. By following these methods, product designers can find the right mix of practicality, good looks, and affordability. Stay tuned for more insights and guidelines to elevate your injection molding game.

Still struggling with the design process? Don’t worry! Now, you can elevate your injection molding game, consider partnering with Prototool, a trusted and professional CNC manufacturing and injection molding service provider.

Our expertise aligns seamlessly with the strategies discussed, ensuring your material selection in product design and designing process is executed with precision, delivering products that excel in functionality, aesthetics, and cost-effectiveness. Contact our professionals today!

The post Strategies for Successful Product Design with the Right Materials appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/successful-product-design-with-the-right-materials/feed/ 2
Beherrschung der Präzision: Ein tiefes Eintauchen in die Dimensionsprüfung beim Spritzgießen https://prototool.com/de/dimensional-inspection-in-injection-molding/ https://prototool.com/de/dimensional-inspection-in-injection-molding/#respond Sun, 21 Jan 2024 03:10:17 +0000 https://prototool.com/?p=17224 Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding
Prototool

Der Artikel konzentriert sich auf die Schlüsselfunktion der Dimensionskontrolle beim Spritzgießen und erörtert die Verwendung von Messgeräten.

The post Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding appeared first on Prototool written by Prototool.

]]>
Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding
Prototool

Ever wondered how manufacturers ensure that each component aligns precisely with its design specifications in the intricate world of Spritzgießen? The answer lies in dimensional inspection—a sophisticated process vital for maintaining precision and quality in manufacturing.

Dimensional inspection, also known as dimensional metrology, stands at the forefront of contemporary image sensor applications, providing a means to test components swiftly as they progress through the Fertigungslinie.

Dimensional Inspection for Injection Molded Part

This inspection process goes beyond a mere measurement tool. Precisely, dimensional testing is a cornerstone for validating new processes, comparing prototypes to CAD models, and ultimately ensuring the seamless execution of manufacturing processes.

In this article, we’ll explore dimensional inspection within the context of injection molding, catering to our intermediate and pro-level readers who are well-versed in the concept but seek deeper insights into its incorporation and optimal utilization.

Why is Dimensional Inspection Important?

Dimensional inspection, a crucial element in the world of injection molding, serves as a cornerstone for achieving unparalleled precision and accuracy. It is a steadfast guardian, ensuring meticulous Qualitätskontrolle throughout manufacturing.

Using hand tool to make dimensional inspection

This sophisticated method meticulously verifies every facet of production, whether through spot checks, automated inspections, or scrutiny of freshly produced items, upholding the highest quality standards.

Verifying the Manufacturing Process

Dimensional inspection stands as a cornerstone in the injection molding landscape, paramount in ensuring the integrity of the manufacturing process. By conducting meticulous spot checks, this process offers a thorough examination, allowing manufacturers to maintain consistent quality across all production batches.

First Article Inspection Skills

When the first product emerges from production, dimensional testing takes the spotlight, providing invaluable insights into the successful execution of the manufacturing process. This critical phase sets the tone for the entire production run, emphasizing the importance of precision from the very outset.

High-Precision Engineering Exploration

Delving into the minutiae of assemblies, dimensional inspection reveals the impact of even the tiniest components, such as micro-gears, on the broader production assembly. This scrutiny ensures that every intricate part contributes seamlessly to the overall precision of the manufacturing process.

Navigating Regulatory Compliance

In the complex manufacturing landscape, adherence to regulatory standards is non-negotiable. Dimensional testing emerges as a stalwart guardian, ensuring that every product and process aligns meticulously with specifications outlined by regulatory bodies like the FDA oder FAA.

Choosing the Right Equipment for Dimensional Inspection

Regarding dimensional inspection, the options for measurement tools are vast, ranging from nano-scale surfaces to aircraft engine turbines. However, selecting the appropriate equipment is paramount. To make an informed choice, consider the following features essential for dimensional testing devices:

  • Befitting Budget: Assess the device’s cost to ensure it aligns with your budget constraints.
  • Accuracy and Precision: The equipment should facilitate precise and accurate inspections, ensuring reliable results.
  • Efficiency: Opt for tools that enable swift and efficient inspections, saving time and resources.
  • Functionality: Ensure the selected equipment serves the specific functions required for your dimensional inspection needs.
Use machine to make an inspection

Factors like reliability, durability, ease of maintenance, and operational simplicity should not be overlooked. Choosing the right equipment is a crucial step towards mastering precision in dimensional testing, contributing to enhanced quality control in the manufacturing process of finished products.

6 Dimensional Inspection Equipment Categories You Should Know About

In the intricate world of injection molding, dimensional inspection is critical, ensuring precision and adherence to exacting standards. To navigate this realm effectively, it’s crucial to understand the diverse spectrum of dimensional inspection equipment.

Let’s explore six main categories, each offering unique capabilities tailored to specific needs:

1. Hand Tools

These fundamental tools, including dial indicators, digital calipers, micrometers, and tape measures, offer versatility and portability for many dimensional testing applications.

Select hand tools based on the specific dimensional measurement needs, ensuring accuracy and precision in the inspection process. Consider factors like portability, ease of use, and affordability.

2. Pneumatic Gauging (Air Gauges)

Utilizing air restriction, these tools excel in non-contact inspection, particularly for workpieces with tolerances of 0.005″ or smaller. They offer rapid and high-precision measurements. When employing pneumatic gauging, consider the specified tolerances of the workpieces. Ensure proper tooling for applications requiring frequent dimensional measurements, optimizing the benefits of this fast and non-contact method.

3. Coordinate Measuring Machines (CMMs)

From portable arms to large, complex machines, CMMs employ contact probes to translate physical positions into digital coordinates. Varying in cost and accuracy, CMMs are versatile but may not suit delicate or elastic surfaces.

CMM for inspection

Assess the cost, accuracy or work envelope of CMMs depending on your demand for dimensional inspection tasks. Consider the compatibility of contact probes with the object’s surface characteristics.

4. Optical Systems

Optical systems, including desktop measuring microscopes and optical comparators, utilize light and optics to gauge dimensions based on object profiles within their field of view.

Choose optical systems based on the desired level of magnification, accuracy, and field of view. Consider the application of overlays or measuring reticles for comparing objects to standard shapes.

5. Light-Based Systems

Techniques of the non-contact inspection tool include structured light oder laser line triangulation that generates a three-dimensional point cloud, otherwise known as a profile. Ambient light and object movement during data acquisition can impact results.

Optimize structured light or laser line triangulation by minimizing object movement during data acquisition. Consider the impact of ambient light and explore the benefits of 3D smart sensors for comprehensive surface mapping.

6. Vision-Based Measuring Systems

Employing CCD, light, lenses, and analytical software, vision-based systems produce high-resolution images, automatically identifying edges and achieving micron-scale accuracies.

Leverage vision-based systems for applications demanding high accuracy and precision. Understand the analytical software’s capabilities in automatic edge detection, and ensure the system’s suitability for quality control requirements.

Choosing the Right Dimensional Inspection Equipment for Injection Molding

In injection molding, achieving precision hinges on choosing the right dimensional inspection equipment. Once the metrics for dimensional measurement are established, the selection process becomes pivotal.

As you begin the process, several factors demand careful consideration to ensure seamless integration and optimal results. Let’s delve into the key considerations guiding the selection of dimensional testing equipment:

choosing the right machine for dimensional inspection

Sensor Type

The prime directive in equipment selection is the sensor type. Opt for a sensor that ensures accurate measurements without altering the measured item’s integrity. The choice of sensor profoundly influences the reliability and precision of dimensional inspection.

Tolerance Requirements

Understanding the acceptable deviation from the desired outcome is crucial. Define tolerance requirements meticulously to align the dimensional testing equipment with the precision demanded by your specific application.

Portability

Consider the portability of the equipment, especially if dimensional measurement needs extend beyond a fixed location. Portable solutions offer flexibility in adapting to diverse manufacturing environments.

Size and Shape of Objects

The dimensional characteristics of the objects to be measured play a pivotal role. Ensure that the chosen equipment accommodates the size and shape diversity inherent in your manufacturing processes.

Geschwindigkeit

The speed of the equipment often determines the efficiency of the inspection process. Evaluate the speed requirements of your application and select equipment that aligns with the desired pace of dimensional measurement.

Automatic or Manual Function

Assess whether your workflow demands automatic or manual functionality. The choice between the two hinges on the nature of your manufacturing process and the level of control you seek in the inspection phase.

Ease of Use

The usability of the equipment is a critical consideration. Opt for equipment that aligns with the skill set of your operators, ensuring seamless integration into your workflow.

Maintenance Requirements

It’s important to understand the maintenance demands of the equipment. Choose equipment with maintenance requirements that align with your operational capabilities, ensuring sustained performance.

Reliability and Durability

Reliability and durability are non-negotiable factors. Select equipment that withstands the rigors of industrial environments, ensuring consistent and accurate performance over time.

Haushalt

While considering all the above factors, aligning your choices with budgetary constraints is imperative. Striking a balance between functionality, precision, and cost is key to a successful investment.

Schlussfolgerung

In the world of injection molding, achieving precision is more than a technicality; it’s a strategic process. Choosing the right inspection equipment is crucial, considering sensor types, tolerance requirements, and portability. This journey requires a careful balance between speed and functionality, ease of use and maintenance, and reliability and budget constraints.

Manufacturers’ commitment to quality control and selecting the right equipment are keys to producing flawless finished products. Prototool, a reliable name in injection molding and CNC manufacturing, is your trusted partner in this pursuit of excellence.

With expertise in measurement data to 3D measuring, Prototool is prepared to enhance your manufacturing capabilities. Embrace precision, streamline processes, and step confidently into the future of injection molding with Prototool by your side.

The post Mastering Precision: A Deep Dive into Dimensional Inspection in Injection Molding appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/dimensional-inspection-in-injection-molding/feed/ 0
Blindbohrungen und Durchgangsbohrungen in der Konstruktion beherrschen https://prototool.com/de/blind-holes-and-through-holes-in-design/ https://prototool.com/de/blind-holes-and-through-holes-in-design/#comments Sun, 14 Jan 2024 10:36:28 +0000 https://prototool.com/?p=17210 Mastering Blind Holes and Through Holes in Design
Prototool

In diesem Leitfaden, der sich speziell an Fachleute richtet, die ihre Fähigkeiten in der Teilekonstruktion verbessern möchten, erfahren Sie mehr über Sacklöcher und Durchgangsbohrungen.

The post Mastering Blind Holes and Through Holes in Design appeared first on Prototool written by Prototool.

]]>
Mastering Blind Holes and Through Holes in Design
Prototool

Managers, designers, and engineers in the manufacturing industry must understand blind holes and through holes for proper performance. This should enable them to perfect their profession.

To help you with that, this in-depth guide will unfold the strategic application of these design elements, providing valuable insights tailored to your needs as a professional or enthusiast. So keep reading to learn all about blind holes and through holes.

The Basics: Blind Holes vs. Through Holes

Blind holes, with a single open end, and through holes, traversing a part from end to end, are foundational in engineering. Distinguishable by symbols and manufacturing ease, the choice between them influences your design flexibility, alignmentund complexity. Let’s explore these differences further below:

drawings for the blind holes turning and through holes turning
  • Symbol: No GD&T symbol for Blind Holes; Through Holes typically represented with a ⊗
  • Manufacturing Ease: Blind Holes are generally more challenging; Through Holes are relatively straightforward
  • Use Cases: Blind Holes are ideal for depth-specific scenarios; Through Holes are suitable for various applications
  • Complexity: Blind Holes can have a flat bottom with effort; Through Holes have a uniform cylindrical geometry
  • Customization: Blind Holes offer more design flexibility; Through Holes have standardized geometry
  • Alignment: Blind Holes require precise positioning; Through Holes are easier to align during assembly

Elements and Considerations for Blind Holes

Meticulous planning is indispensable in blind hole design, encompassing depth, diameter, material properties, and part orientation. The callout ⌀.098 ↧.200, for instance, specifies a hole with a diameter of 0.098 inches and a depth of 0.200 inches. Placement and orientation significantly impact stress distribution, machining tool access, and overall aesthetics.

Tolerances, Surface Finish, and Material Considerations

  • Achieving precise tolerances and suitable surface finishes is critical.
  • Material properties influence decisions regarding tolerances.
  • The intended application guides you toward achieving the required accuracy.

Cleaning and Drilling Techniques for Blind Holes

Efficient cleaning and drilling are crucial in blind hole manufacturing. Specialized tools, such as modified drill bits oder Schaftfräser, offer customization options. Techniques like using air or high-pressure liquid coolant facilitate efficient chip extraction, contributing to the overall quality of the blind holes.

Cleaning Techniques

  • Hand-operated air guns or specialized handheld hole cleaners facilitate material removal.
  • Cleaning blind holes after drilling is advisable to remove leftover debris.

Drilling Techniques

  • Modified drill bits or end mills are employed for creating flat-bottomed blind holes.
  • Material removal of chips during drilling is crucial for preventing complications and ensuring component longevity.
blind holes in the screws

Design Considerations for Blind Holes

The significance of blind holes transcends their presence in a design; it lies in the delicate balance between form and function. Planning blind holes necessitates your meticulous attention to depth and diameter, aligning with expected capability and underlying prerequisites. Material properties demand different machining settings, influencing the design of blind holes for optimal functionality.

Placement and Orientation

  • Strategic placement and orientation significantly impact the usefulness and manufacturability of parts.
  • Even stress distribution, easy machining tool access, and overall aesthetics become critical considerations.
  • Alignment of blind holes during assembly ensures seamless integration into your larger design.

Tolerances, Surface Finish, and Material Considerations in Blind Hole Design

The achievement of precise tolerances and suitable Oberflächengüte is a nuanced process in blind hole design. Material properties, machinability, and the intended application influence decisions regarding tolerances. The intricate relationship between material properties, machining processes, and optimal surface finish guides you toward achieving the required accuracy in blind hole Entwurf.

Precision CNC Drilling with Blind Hole

Precision CNC drilling is pivotal in achieving manufacturing excellence, especially when dealing with blind holes. The drill depth clearance in blind holes is crucial to provide sufficient space for taps to effectively cut or machine the needed number of threads. The choice of tap type, material thickness, and the intended application influence the hole depth, requiring your thoughtful approach to maintain the integrity of the machining material.

Tapping Considerations in Blind Hole Design

  • Blind hole design extends beyond drilling; it includes tapping considerations, where the choice of tap type and hole depth become critical factors.
  • The left-hand machine tap, with its straight flute and peel point, is suitable for through holes where chips are ejected below the hole.
  • In contrast, blind holes demand a right-hand spiral flute tap where chips are removed above the hole to ensure clean cutting.

Through Hole Components

Long before the era of surface mount components, through-hole parts dominated PCB design. Despite the evolution in design preferences, through-hole components retain their significance for specific applications. Their standardized package sizes and robust mechanical attachment make them indispensable for connectors, switches, and other parts subjected to mechanical forces.

common through holes

So, while surface mount components dominate contemporary PCB design, through-hole components retain their significance, especially for robust mechanical attachments. Components conducting high power or generating substantial heat find optimal solutions in through-hole connections.

Here are some key considerations for through-hole processing for designs:

Power, Durability, and Heat

  • Through-hole components continue to play a vital role in PCB design, offering you unmatched durability, mechanical strength, and heat dissipation.
  • Parts requiring robust mechanical attachment, such as switches, connectorsund fuses, find optimal solutions in through-hole connections.
  • Through holes are favored for components conducting high power or generating substantial heat, showcasing their adaptability in your modern designs.

PCB Assembly Challenges and Solutions

  • Through-hole parts present unique challenges in the PCB assembly phase.
  • Manual installation or automated insertion through pick-and-place machines becomes a critical decision.
  • Automated soldering through a wave soldering process demands additional considerations, such as masking surface mount components to prevent exposure to the wave.

Factors Influencing CNC Drilling Design

Optimizing CNC Drilling Process: Success in CNC drilling hinges on numerous factors. Exploring drill entry and exit surfaces, hole straightness, and overall part layout is crucial for achieving optimal results.

milling for the blind holes

Role of Designers: You play a pivotal role in the CNC drilling process. Your responsibilities extend to optimizing drill paths, considering material characteristics, and accounting for tooling constraints. Collaboration between you and machinists is key for a seamless manufacturing process.

Design Considerations

  • Drill Entry and Exit Surfaces: The significance of perpendicular entry and exit surfaces in CNC drilling cannot be overstated. Further elaborating on this aspect, you should give examples and case studies showing how it affects the outcome.
  • Handling Interrupted Cuts: Challenges arise when dealing with interrupted cuts during CNC drilling. Explaining these challenges and offering strategies to minimize deflection ensures a smoother drilling process, especially in complex designs.
  • Threaded Product Design: Designing products with threaded elements requires your careful consideration. Insights into incorporating chamfers and countersinks not only enhance functionality but also simplify the manufacturing process.
  • Intersecting Holes: The risks associated with intersecting drilled and reamed holes are nuanced. Presenting case studies and best practices guides you in avoiding potential pitfalls and ensuring the integrity of the final product.
  • Reaming Practices: Elaborating on good practices for reaming blind holes, providing guidance on extra drilled depth, and referencing a linked table for specifications enhances the precision of your CNC drilling designs.

Designing Holes for CNC Drilling

  • Blind Hole Considerations: Blind holes add complexity to CNC drilling. Discussing the bottom shape of blind holes, addressing the need for standard drill points, and exploring potential alternatives provide you with valuable insights.
  • Avoiding Deep Holes: Deep holes present challenges in CNC drilling, impacting tool stability and heat dissipation. Highlighting the consequences and showcasing alternative solutions, including specialized drills, guides you in making informed choices.
  • Size Considerations: Choosing appropriate hole sizes is a critical aspect of CNC drilling design. Discussing the impact of small holes on production efficiency and providing practical guidelines aids you in optimizing your designs.

Coordinating CNC Drilling Design

  • Coordinate Systems: Rectangular coordinates are preferred in hole location designation for CNC drilling. Emphasizing the advantages of this system, such as ease of machining, guides you in coordinating precise hole placements.
  • Single-Side Drilling: Designing parts with holes drilled from a single side streamlines tooling and reduces handling time. Exploring the benefits of this approach encourages efficient and cost-effective CNC drilling.
  • Standardization: Stressing the importance of standardizing hole sizes and screw threads is crucial for consistent manufacturing. Offering practical examples and industry recommendations supports you in creating designs aligned with best practices.

Calculations for Depth of Cut and Clearance

  • Depth of Cut Calculation: Breaking down the calculation process for determining the depth of cut for blind and through holes provides a practical tool for optimizing your CNC drilling designs.
  • Clearance Calculation: Explaining the formula for calculating clearance underscores its impact on hole quality, accuracy, and tool performance. This knowledge empowers you to fine-tune your designs for optimal results.

Still have questions? Contact our professional team at Prototool to assist you with understanding the entire blind or through hole drilling process.

The post Mastering Blind Holes and Through Holes in Design appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/blind-holes-and-through-holes-in-design/feed/ 1
Die Vorteile der Verwendung von Kunststoff-Formteilen für Kunststoffpaletten https://prototool.com/de/the-benefits-of-using-plastic-molding-for-plastic-pallets/ Sun, 14 Jan 2024 09:47:07 +0000 https://prototool.com/?p=17198 The Benefits of Using Plastic Molding for Plastic Pallets
Prototool

Entdecken Sie den Kunststoffspritzguss für Kunststoffpaletten, der die Herstellung zu einer fortschrittlichen Technologie mit verbesserten Designmerkmalen gemacht hat.

The post The Benefits of Using Plastic Molding for Plastic Pallets appeared first on Prototool written by Prototool.

]]>
The Benefits of Using Plastic Molding for Plastic Pallets
Prototool

Maschinen, die für Kunststoffformteile für Kunststoffpaletten haben ihren Platz in einer revolutionären Veränderung der Industrielandschaft eingenommen, indem sie herkömmliche Holzpaletten durch innovative Kunststoffalternativen ersetzt haben. Aber ist das wirklich hilfreich? Ehrlich gesagt, steigert das Aufkommen moderner Kunststoffpalettenmaschinen nicht nur die Produktionseffizienz, sondern optimiert auch die Raumnutzung und fördert die Umweltfreundlichkeit.

Sie wissen nicht, wie? Dann sind Sie hier richtig. In diesem Artikel werden wir das und mehr im Detail erkunden. Lesen Sie also weiter und erfahren Sie alles über die Vorteile und die Verwendung von Kunststoffguss für Kunststoffpaletten.

Kunststoffformteile für Kunststoffpaletten

Wann werden Kunststoffpaletten verwendet?

Kunststoffpaletten finden in verschiedenen Branchen breite Anwendung, insbesondere in Lieferkettenlogistikaufgrund ihrer Haltbarkeit, Vielseitigkeit und ihres hygienischen Designs. Da die Nachfrage nach spritzgegossenen Kunststoffpaletten weiter steigt, erforschen die Hersteller effiziente Produktionsmethoden, wobei sich das Kunststoffspritzgießen als Schlüsseltechnologie herauskristallisiert.

Hohe Steifigkeit und stabiles Klemmsystem

Der Kunststoffpalettenspritzguss zeichnet sich durch seine Fähigkeit aus, eine hohe Steifigkeit zu erreichen. Dies wird durch eine sorgfältige Spannungsanalyse in Verbindung mit einer stabilen Klemmsystem mit vier Hydrauliken.

Dies führt zu einer minimalen Verformung der Form, präziser Genauigkeit und dauerhafter Parallelität, wodurch ein unerwünschtes Kippen der Form wirksam verhindert wird. Dies garantiert nicht nur die strukturelle Integrität der Kunststoffpaletten, sondern trägt auch zu ihrer langen Lebensdauer bei.

Schnellerer Werkzeugwechsel

Eines der hervorstechendsten Merkmale, das sich in Geräten wie Die TPII-Spritzgießmaschine von CLFist der beschleunigte Formwandlungsprozess. Dies ist ein entscheidender Vorteil für Hersteller, die in der Produktion von Kleinserien und Großserien tätig sind.

Die speziell entwickelten Strukturen ermöglichen schnellere und reibungslosere Übergänge zwischen den Werkzeugen, wodurch die Stillstandszeiten minimiert und die Gesamteffizienz der Produktion maximiert werden.

Kunststoffspritzgussform für Paletten

Flexibilität der Anpassung

Die Zwei-Platten-Konstruktion, die in den Kunststoffspritzguss für Kunststoffpalettenmaschinen integriert ist, bietet ein neues Maß an Flexibilität bei der Anpassung. Die TPII-Baureihe zum Beispiel ermöglicht den Austausch der Form von der Seite.

Dies schafft zusätzlichen Platz und vereinfacht das Verfahren, was es zu einer attraktiven Investition für Hersteller von Kunststoffpaletten die auf unverwechselbare Designs abzielen. Die Flexibilität, die bei der kundenspezifischen Anpassung geboten wird, stellt sicher, dass jede Kunststoffpalette genau auf die verschiedenen Bedürfnisse der Industrie zugeschnitten werden kann.

Ein erfolgreiches Beispiel ist die Zusammenarbeit mit einer bekannten taiwanesischen Marke, die auf Kunststoffpaletten spezialisiert ist. Durch die Verfeinerung des Kühlsystemdesigns und die strategische Reduzierung der Produktzykluszeit konnte die Gesamtzykluszeit um beachtliche 40% gesenkt werden.

Das Ergebnis war eine beeindruckende Leistung - die Herstellung einer 11 kg schweren Kunststoffpalette in nur 90 Sekunden. Diese Erfolgsgeschichte unterstreicht, wie Fortschritte beim Spritzgießen von Kunststoffpaletten zu erheblichen Verbesserungen der Produktionseffizienz und des Ausstoßes führen können.

Das Spritzgießverfahren für Kunststoffpaletten

Der Prozess der Herstellung von Kunststoffpaletten durch Spritzguss umfasst mehrere entscheidende Phasen:

Präzise Materialeingabe

Die Reise beginnt mit der Zuführung des Kunststoffs in die Spritzgießmaschine durch ein sorgfältig kontrolliertes Trichtersystem. Dieser Schritt gewährleistet die Präzision der Materialzufuhr und legt den Grundstein für die Herstellung hochwertiger spritzgegossener Kunststoffpaletten.

Schmelzen und Einspritzen

Das Kunststoffmaterial durchläuft einen Umwandlungsprozess mit Heizbändern und Reibungskräften, wodurch es in einen flüssigen Zustand übergeht. Der geschmolzene Kunststoff wird dann in eine sorgfältig gefertigte Form oder Kavität gespritzt, die genau die für die Kunststoffpalette erforderliche Form annimmt. Anschließend erfolgt eine effiziente Kühlung und Aushärtung, die durch ein hochmodernes Kühlsystem unterstützt wird.

Arten von Einspritzsystemen

Bei der Herstellung von Kunststoffpaletten spielen vor allem zwei Einspritzsysteme eine entscheidende Rolle:

  • Niederdrucksystem: Bei diesem System wird der Formhohlraum mit einer Mischung aus Kunststoff und einem Inertgas eingespritzt. Das Ergebnis ist ein zellularer Kern, der von hartem Kunststoff umhüllt ist. Diese Methode ist ideal für die Herstellung von Kunststoffpaletten mit einem optimalen Verhältnis zwischen Festigkeit und Gewicht, das sowohl Haltbarkeit als auch Kosteneffizienz in der Produktion gewährleistet.
  • Hochdruck-Injektion: Weit verbreitet bei der Herstellung von hochdichten Polyethylen (HDPE) oder Polypropylen (PP) Kunststoffpaletten ist das Hochdruckinjektionssystem ein präzises Verfahren, das dafür bekannt ist, dass es dem Endprodukt einen hohen Glanz verleiht. Dies macht zusätzliche Nachbehandlungen überflüssig und rationalisiert den Herstellungsprozess.
Verfahren der Kunststoffformung für Kunststoffpaletten

Tiefziehen von Kunststoffpaletten

Das Thermoformverfahren ist ein weiteres bekanntes Verfahren zur Herstellung spritzgegossener Kunststoffpaletten, das sich besonders für die Großproduktion eignet. Bei diesem Verfahren wird der Kunststoff auf eine geschmeidige Temperatur erhitzt, über einer Form geformt und dann abgekühlt. Beim Thermoformen gibt es zwei Haupttechniken: Vakuumtiefziehen und Drucktiefziehen.

Blasformen von Kunststoffpaletten

Das Blasformen, das sich auf das Formen von Hohlkörpern konzentriert, ist ein besonderes Verfahren zur Herstellung von Kunststoffpaletten mit hervorragender Beständigkeit gegen niedrige Temperaturen. Dabei wird das Kunststoffmaterial geschmolzen, ein Vorformling geformt, in eine Form eingespannt und mit Druckluft aufgeblasen. Blasgeformte Kunststoffpaletten sind für ihre Haltbarkeit und Schlagfestigkeit bekannt.

Die Wahl des richtigen Herstellungsverfahrens

Bei der Auswahl des am besten geeigneten Verfahrens zur Herstellung spritzgegossener Kunststoffpaletten müssen verschiedene Faktoren berücksichtigt werden:

  • Qualität der Kunststoffpaletten: Verschiedene Verfahren ergeben unterschiedliche Qualitäten; wählen Sie je nach den gewünschten Eigenschaften.
  • Kostenüberlegungen: Bewertung von Werkzeug-, Ausrüstungs-, Arbeits- und Energiekosten, um sie mit den Budgetvorgaben in Einklang zu bringen.
  • Produktionskapazität: Entscheiden Sie sich für ein Verfahren, das den Produktionsanforderungen entspricht und skalierbar ist.
  • Oberflächengüte und Designtoleranz: Berücksichtigen Sie die ästhetischen und funktionalen Anforderungen an das Design der spritzgegossenen Kunststoffpaletten.

Tipps für die Gestaltung von Kunststoffpaletten mit Hilfe von Kunststoffformteilen

Komplizierte und kundenspezifische Palettendesigns

Innovatives Design ist ein entscheidender Vorteil des Kunststoffspritzgießens für die Herstellung von Kunststoffpaletten, denn diese Technologie ermöglicht die Erstellung komplexer und anpassbarer Muster, die speziellen Anforderungen gerecht werden. Das Kunststoffspritzgießen für Kunststoffpaletten ermöglicht eine präzise Gestaltung von Größe, Struktur und Merkmalen, was eine vielseitige Handhabung unterschiedlicher Lasten ermöglicht.

Ob es sich um empfindliche Gegenstände handelt, die besondere Sorgfalt erfordern, oder um schwere Lasten, die Stabilität verlangen - Kunststoffpaletten bieten eine maßgeschneiderte Lösung für verschiedene Anwendungen. Diese individuelle Anpassung steigert die Effizienz der Materialhandhabung in verschiedenen Branchen.

Langlebig und widerstandsfähig gegen Abnutzung

Spritzgegossene Kunststoffpaletten, die im Spritzgussverfahren hergestellt werden, zeichnen sich durch eine bemerkenswerte Zähigkeit aus und halten dem hohen Verschleiß in Branchen wie Lager und Logistik stand. Diese Paletten erweisen sich als widerstandsfähig unter schwierigen Bedingungen, wie z. B. bei der Einwirkung von Feuchtigkeit und Chemikalien, und sind damit haltbarer als herkömmliche Holzpaletten. Ihre Fähigkeit, schweren Lasten ohne Verformung oder Beschädigung standzuhalten, sorgt für eine längere Lebensdauer und trägt so zu Kosteneinsparungen und Nachhaltigkeit bei.

Konsistente, präzise und einheitliche Abmessungen und Gewichte

Das Kunststoffspritzgussverfahren gewährleistet ein hohes Maß an Konsistenz und Präzision bei der Abmessungen und Gewicht von spritzgegossenen Kunststoffpaletten. Diese Einheitlichkeit ist entscheidend in Branchen wie Lebensmittel und Getränkeund Einzelhandel, wo effiziente Stapelung, Lagerung und Transport von standardisierten Palettengrößen abhängen.

Darüber hinaus bleiben die Gesamtqualität, die Haltbarkeit und die Stoßfestigkeit bei allen im Spritzgussverfahren hergestellten Paletten gleich, so dass sie den Anforderungen unter harten Bedingungen gerecht werden.

Günstigere Versandkosten

Kunststoffpaletten haben einen erheblichen Gewichtsvorteil, da sie im Vergleich zu ihren Pendants aus Holz leichter sind. Das geringere Gewicht trägt zu einem effizienteren Transport bei, was zu Kosteneinsparungen beim Versand führt.

Die leichteren Paletten sind bequemer zu manövrieren, was die Belastung der Arbeiter verringert und Verletzungen durch schweres Heben vermindert. Außerdem wird durch das Fehlen von Splittern das Risiko von Produktbeschädigungen während des Transports eliminiert, was die Kosteneffizienz von kunststoffgeformten Paletten weiter erhöht.

Die Paletten sind nicht porös und leicht zu reinigen

Kunststoffgeformte Paletten sind von ihrer Konstruktion her porenfrei und haben keine winzigen Lücken, die Flüssigkeiten, Gerüche oder Verunreinigungen aufnehmen könnten. Aufgrund dieser Eigenschaft eignen sie sich für den Einsatz in Industriezweigen, in denen Hygiene von entscheidender Bedeutung ist, da Lebensmittel und Pharmazeutika Sektor.

Die nicht poröse Beschaffenheit dieser Paletten verhindert die Ausbreitung von Bakterien, Schimmelpilze oder andere KrankheitserregerDadurch wird eine saubere und sichere Arbeitsumgebung gewährleistet. Darüber hinaus vereinfachen die glatten und nahtlosen Oberflächen den Reinigungsprozess und ermöglichen die einfache Entfernung von Schmutz, Staub oder verschütteten Flüssigkeiten durch verschiedene Reinigungsmethoden.

fertige Paletten im Kunststoffspritzgussverfahren

Ein umfassender Leitfaden zur Herstellung einer Kunststoffpalettenform in 5 einfachen Schritten

Schritt 1: Produktdesign von Kunststoffpaletten

Machen Sie sich in der Anfangsphase gründlich mit den spezifischen Anforderungen an die Kunststoffpalette vertraut. Berücksichtigen Sie Faktoren wie den Verwendungszweck, die Tragfähigkeit und die Industrienormen. Stellen Sie sicher, dass das fertige Produkt alle Normen und Spezifikationen erfüllt, indem Sie mögliche Probleme bei den Formgebungsverfahren angehen.

Schritt 2: Entwurf eines Kunststoffpalettenformtores

Bei der Gestaltung der Kunststoffpalette Formangussverwenden Sie CAE-Tools zur Analyse der Multi-Point-Gate-Design auf mögliche Mängel. Optimieren Sie das Anschnittdesign, um Probleme mit dem Übergewicht beim Transport zu vermeiden. Ziehen Sie außerdem den Einsatz integrierter Heißkanäle in Betracht, um deren Effektivität bei der Reduzierung von Materialverlusten und der Gewährleistung eines effizienten Materialflusses während des Spritzgießens zu bewerten.

Schritt 3: Entwürfe für Kunststoffpalettenformeinsätze und Einsätze für den Wasserweg

Konzentration auf die Konstruktion von Formen mit hochpräzisen Einsätzen für bewegliche und feste Formteile. Nutzen Sie CAD-Software für die detaillierte und präzise Konstruktion von Einsätzen. Sorgen Sie für einen gleichmäßigen Materialfluss durch jeden Abschnitt, indem Sie ein effizientes Wasserkanalsystem innerhalb der Einsätze entwerfen. Optimieren Sie das Kühlsystem, um hitzebedingte Verschiebungen während des Formprozesses zu verhindern.

Schritt 4: Das Auswurfdesign der Palettenform

Einbindung einer großen Anzahl von Auswerferstifte in den Entwurf einbeziehen und sie strategisch auf der Grundlage der Produktstruktur platzieren. Wählen Sie Ausstoßpositionen mit guter struktureller Unterstützung für einen reibungslosen und effizienten Ausstoß. Wählen Sie hochwertiges Stiftzubehör, das reibungslos in den Einsatz passt, und verbinden Sie genügend Stangen von der Kunststoffmaschine, um eine gleichmäßige Kraft zu erzeugen und die Verformung während des Ausstoßvorgangs zu minimieren.

Schritt 5: Auswahl des Palettenformstahls

Bewerten Sie Stahlhärte, Zähigkeitund Bearbeitungskosten basierend auf den Anforderungen der Form. Überprüfen Sie die Korrektheit des bestellten Stahls vor der Herstellung, um die strukturelle Integrität sicherzustellen. Stellen Sie vor der Herstellung sicher, dass der ausgewählte Stahl die Kriterien für eine erfolgreiche Formherstellung erfüllt.

Schlussfolgerung

Da die Nachfrage nach spritzgegossenen Kunststoffpaletten steigt, stehen die Hersteller vor der Herausforderung, die Produktionseffizienz und Nachhaltigkeit zu optimieren. Das Kunststoffspritzgießen, insbesondere das Spritzguss- und Thermoformverfahren, erweist sich als eine wichtige Lösung, die ein Gleichgewicht zwischen Kosteneffizienz, Individualisierung und Umweltaspekten bietet.

Anmerkung: Für fachkundige CNC-Fertigung und Spritzgießdienstleistungen, Prototool zeichnet sich als Branchenführer aus, der umfassende Lösungen für die Produktion von Kunststoffpaletten anbietet.

The post The Benefits of Using Plastic Molding for Plastic Pallets appeared first on Prototool written by Prototool.

]]>
Konstruktion von Zahnradformen für Kunststoffzahnräder https://prototool.com/de/gear-mold-design-for-plastic-gears/ https://prototool.com/de/gear-mold-design-for-plastic-gears/#respond Tue, 09 Jan 2024 07:26:18 +0000 https://prototool.com/?p=17162 Gear Mold Design for Plastic Gears
Prototool

Entdecken Sie die Besonderheiten der Konstruktion von Zahnradformen für Kunststoffzahnräder, ihre wichtigsten Merkmale und speziellen Fertigungstechniken.

The post Gear Mold Design for Plastic Gears appeared first on Prototool written by Prototool.

]]>
Gear Mold Design for Plastic Gears
Prototool

Gear mold design, especially for plastic gears, differs significantly from traditional mold designs. Key parameters such as tooth thickness (the arc length between two sides of a gear tooth), module (a parameter measuring gear size), and pressure angle (the acute angle between the direction of force and direction of motion, excluding friction) require adjustments based on empirical data.

Unlike other processes, gear molds cannot be directly processed based on shrinkage rates. Professional gear and gearbox manufacturers, leveraging long-term experience and collaboration with computer software companies, have developed specialized software for calculating gear mold cavity parameters. This software can directly generate gear parameters and profiles, aiding in gear modification and enhancing tooth accuracy. Let’s delve into the intricacies of plastic gear mold design.

Plastic Gear Product Display

Cavity Design for Plastic Gear Molds

Designing the cavity for a plastic gear mold has always been a technical challenge in the mold industry, primarily due to two reasons:

1. Precision in Plastic Shrinkage Rates:

During the molding process of plastic gears, plastic granules transform into a molten state under high heat and then cool down to form solid plastic gears. The shrinkage rate of plastic during this process is a range value, making it difficult to determine precise shrinkage rates.

2. Non-linear Shrinkage Calculation for Mold Cavities:

For involute small module plastic gear molds, the mold cavity essentially represents an imaginary gear. This imaginary gear differs from both shifted gears and internal gears. After shrinkage, it becomes the desired plastic gear. The shrinkage on the involute tooth profile of this imaginary gear is not uniform like the isotropic shrinkage seen in general plastic parts. On the gear plane, the shrinkage in the x and y directions is unequal, leading to non-linear shrinkage, as shown in Figure 1. This non-linearity significantly increases the complexity of designing involute plastic gear mold cavities.

Comparison of Theoretical Tooth Profiles of Plastic Gears and Mold Cavity Tooth Profiles

The right way to design a gear mold cavity

Facing these technical challenges, using the isotropic shrinkage method for designing mold cavities often yields suboptimal results. Based on years of practical experience and precise estimation of plastic shrinkage rates, we recommend using the variable module method for theoretical design of gear mold cavities, followed by tooth profile correction to ensure accuracy and rationality of the mold cavity.

The variable module method assumes that during various processing stages, the base circle diameter, pitch circle diameter, addendum circle diameter, and dedendum circle diameter of a gear remain consistent, scaling up or down proportionally, similar to the radial dimension changes in simple sleeve-like parts. For a gear’s pitch circle, as determined by the formula d=mz, it is dependent only on the module m and the number of teeth z.

Since the number of teeth on a specific gear is constant, we can consider the change in the pitch circle diameter during processing as a change in the module. This principle implies that the space encompassed by the plastic gear mold cavity is an imaginary gear with constant number of teeth and pressure angle, with its grooves forming the cavity’s tooth profile.

We can calculate the module of this imaginary gear using a proportional method. The formula for this calculation is m’ = (1 + η%)m. In this formula, m’ represents the module of the mold cavity tooth profile, m is the theoretical module of the designed gear, and η% is the plastic’s shrinkage rate. By substituting the module m’ into the corresponding gear calculation formula, the resulting gear represents the imaginary gear of the mold cavity. Practice has shown that the variable module method effectively addresses the challenge of non-linear shrinkage in involute tooth profiles, as demonstrated by the mold cavity product shown in Figure 2.

Gear mold cavity

Gate Design for Plastic Gear Molds

In the process of molding plastic gears, the location of the gate significantly impacts the precision of the gears, especially their radial runout. The distribution form of the gate also crucially affects the overall mechanical properties of the plastic gears. When designing gates for plastic gear molds, if the gear product allows, it is recommended to use a three-point gating system. Ideally, these three points should be located on the same circular arc and evenly distributed, as shown in Figure 3.

Comparison of three-point balanced gating system and one-point balanced gating system

Using a three-point balanced gating system, the plastic melt flows radially from the gates, converging at the flow fronts to form three weld lines. At these weld lines, the orientation of fibers tends to be parallel to the flow front. In gears, this results in fibers being radially distributed at the weld lines, while being randomly distributed in other parts of the gear. This creates areas of low shrinkage along the weld lines. The difference in fiber orientation between the weld lines and the rest of the gear is less pronounced than in gears with a single gate, leading to higher gear precision. Figure 4 shows a schematic comparison of fiber orientation and filling patterns when using a single eccentric gate versus a three-point evenly distributed gate.

Comparison Diagram of Fiber Flow Directions in One-Point vs. Three-Point Gating Systems

Venting Design for Plastic Gear Molds

Venting is a crucial aspect to consider in plastic mold design. For plastic gear molds, the design of venting on the tooth surfaces is particularly important. We machine most surfaces of gear molds with a grinding machine. This process ensures a good surface-to-surface fit. However, it tends to result in insufficient filling at the last areas during the injection process. To eliminate trapped air, it is necessary to create venting grooves on the tooth surfaces. Generally, the design of these venting grooves on the tooth surfaces is as shown in Figure 5.

gear venting system design

Structural Design of Plastic Gear Molds

Given that plastic gear injection molding often uses point gates, the mold structure commonly adopts a three-plate design. Figure 6 shows the design diagram of a gear mold, and Figure 7 displays the actual gear mold. The working principle of the gear mold is as follows:

Structure of the designed gear mold
gear mold cavity and core

After completing the injection molding action, the movable part of the mold begins to open under the drive of the injection molding machine:

  1. First Stage of Parting: Due to the action of spring 1, the stripper plate begins to part from Plate A. The sprue puller pin action fixes the main channel on the stripper plate and causes the gate to break away from the product.
  2. Second Stage of Verabschiedung: After the mold opens 95mm, under the action of the tie-bar assembly, the stripper plate begins to separate from the faceplate, releasing the main channel from the sprue bush.
  3. Third Stage of Verabschiedung: As the mold continues to open, under the action of the tie-bar assembly, Plate A begins to part from Plate B. After opening to 90mm, the ejector plate starts to move, ejecting the product. During this process, the guide posts of the ejector plate are used to enhance the balance of ejection. The ejector plate resets under the action of spring 2. This completes the entire mold opening and ejection action.

Manufacturing of Plastic Gear Molds

In the process of molding plastic gears, the gear mold is the key equipment for shaping the plastic gears and ensuring their precision. The plastic gear mold can be divided into two main parts: the gear cavity and the mold frame. The gear cavity, also known as the gear ring, is the most critical and precision-demanding part of the entire gear mold manufacturing process.

1. Gear Cavity Machining

The machining of the gear cavity is key in the manufacturing of plastic gear molds. The molding of plastic gears is a form of ‘replica’ processing. In this process, the cavity’s tooth profile is a deformed template of the gear tooth shape. Therefore, it’s essential to strictly control the dimensional accuracy and surface roughness of the cavity. It is essential to avoid defects such as burrs, eccentricity, and surface scratches. Therefore, a strict gear cavity machining process must be established to ensure the precision of the cavity production.

There are mainly four methods for machining the gear cavity: wire cutting, electrical discharge machining (EDM), electroforming, and beryllium copper alloy casting. Each of these methods has its advantages and disadvantages for machining gear cavities. Manufacturers commonly use wire cutting for involute straight cylindrical gears and generally prefer EDM for helical gears. Additionally, they can machine electrodes used for EDM of gear cavities using wire cutting. For helical gear electrodes with a small helix angle (β≤6°), wire cutting is still applicable.

2. Mold Frame Machining

The mold frame, also known as the mold base, is an auxiliary forming part of the gear mold. The process of machining the mold frame is similar to that of common plastic injection molds. Therefore, this article will not elaborate on it. Figure 8 shows the actual image of the gear mold frame machining.

Various plastic gears

The post Gear Mold Design for Plastic Gears appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/gear-mold-design-for-plastic-gears/feed/ 0
Allgemeine Schritte bei der Konstruktion und Produktentwicklung von Medizinprodukten https://prototool.com/de/general-steps-in-medical-device-design-and-product-development/ https://prototool.com/de/general-steps-in-medical-device-design-and-product-development/#respond Tue, 09 Jan 2024 02:17:09 +0000 https://prototool.com/?p=17152 General Steps In Medical Device Design And Product Development
Prototool

Entdecken Sie die wichtigsten Phasen des Designs und der Produktentwicklung von Medizinprodukten, um Qualität und die Einhaltung strenger Vorschriften zu gewährleisten.

The post General Steps In Medical Device Design And Product Development appeared first on Prototool written by Prototool.

]]>
General Steps In Medical Device Design And Product Development
Prototool

Ein professionelles Industriedesign-Unternehmen, das sich auf medizinische Geräte spezialisiert hat, hält sich an die strengen Qualitätskontrollvorschriften für das Design medizinischer Geräte und Produktentwicklungsprozesse. Dies ist von entscheidender Bedeutung für die Gewährleistung der Effizienz und Qualität des Designs und der Entwicklung von Medizinprodukten. Im Folgenden werden die gemeinsamen Schritte bei der Konzeption und Entwicklung von Medizinprodukten erläutert.

Entwurf für ein medizinisches Gerät

1. Projektinitiierung und -genehmigung

Wenn ein Industriedesignunternehmen die Designanforderungen eines Kunden für ein medizinisches Produkt erhält, stellt es in der Regel ein Projektauftragsdokument aus, das ankündigt, dass von nun an die Arbeit am Design und an der Entwicklung beginnt.

Produktentwicklung und Design von Medizinprodukten

2. Planung für Design und Entwicklung von Medizinprodukten

Nach der Initiierung des Projekts stellen die Designer auf der Grundlage der spezifischen Designanforderungen ein entsprechendes Eliteteam zusammen, wobei jedes Mitglied für seine jeweilige Aufgabe verantwortlich ist. Sobald das Team den Entwurf und die Entwicklung eines Konzepts abgeschlossen hat, schlagen sie verschiedene Konzepte vor, z. B. die Funktion des Medizinprodukts, d. h. was es tut, das Aussehen der strukturellen Integrität, die im Herstellungsprozess verwendeten Materialien

3. Wichtige Inputs für Design und Entwicklung

Die Funktionen, Merkmale, Sicherheitsanforderungen und Risikomanagementvorschriften des Produkts werden auf der Grundlage von Marktforschungsergebnissen festgelegt. Dabei werden verschiedene Aspekte berücksichtigt: die Hauptanwendung, die Eigenschaften und der Nutzen des Produkts, seine Fähigkeit, im Betrieb Anforderungen wie die Arbeitsbelastung des Personals, die Lufttemperatur, die Sicherheitsvorkehrungen, die Stabilität der Position, die Zeitspanne, die verfügbaren Rohstoffe usw. zu erfüllen. Diese Aspekte werden kritisch geprüft, bestätigt und mit strenger Präzision dokumentiert, bevor die erforderlichen Unterlagen in Umlauf gebracht werden.

4. Outputs in Design und Entwicklung

Die Entwurfsergebnisse sollten zunächst die Anforderungen an den Entwurf erfüllen. Es muss die erforderlichen Rohstoffe, Bauteile, technischen Normen, Abnahmeregeln, Produktausführungsnormen, technischen Zeichnungen, Bauteildetails, den Produktionsablauf, den Bearbeitungsprozess, die Ausrüstung der Produktionslinie, Prototypen, Prüfverfahren und -methoden, Verpackungen und Verpackungsetiketten detailliert angeben. Darüber hinaus sollten Aufzeichnungen über den Entwurfs- und Entwicklungsprozess akribisch geführt werden.

Design und Entwicklung medizinischer Geräte Fall

5. Überprüfung von Entwurfs- und Entwicklungsplänen

Die Entwurfs- und Entwicklungspläne sollten systematisch überprüft werden, um ihre Anwendbarkeit und Wirksamkeit sicherzustellen. Bei diesem Prozess wird überprüft, ob die Ergebnisse den Gesamtzielen entsprechen. Es soll bewertet werden, ob die Ergebnisse der Entwurfs- und Entwicklungsphasen die im Entwurfsplan festgelegten Anforderungen erfüllen und den einschlägigen Gesetzen und Vorschriften entsprechen. In diesem Schritt werden etwaige Unzulänglichkeiten ermittelt und Lösungen vorgeschlagen, um die Nichtkonformität des Produkts in einem frühen Stadium zu verhindern.

Design und Entwicklung medizinischer Geräte Fall02

6. Verifizierung von Design und Entwicklung

Um sicherzustellen, dass die Ergebnisse des Designs und der Entwicklung von Medizinprodukten mit den spezifizierten Eingaben übereinstimmen, sollte man die Verifizierung entsprechend der geplanten Zuordnung durchführen. Zu den Verifizierungsmethoden gehören: die Verwendung verschiedener Ansätze für den Entwurf und die Überprüfung anhand der Entwurfsdaten oder -anforderungen, der Vergleich mit ähnlichen Entwürfen, die Erstellung von Prototypen zur Prüfung und Demonstration, die Selbstprüfung von Prototypen, die Prüfung durch Dritte und die Überprüfung von Dokumenten.

7. Validierung von Design und Entwicklung

Um sicherzustellen, dass das Produkt die geforderten Normen für die Gebrauchstauglichkeit oder die bekannte erwartete Hauptanwendung erfüllt, sollte die Validierung des Designs und der Entwicklung des Medizinprodukts entsprechend der Zuordnung im Designplan durchgeführt werden. Dies umfasst klinische Bewertungen, Simulations- und Vergleichsprüfungen sowie Funktionsbewertungen.

Darüber hinaus sollte man bei Bedarf Entwurfsänderungen und Änderungsprüfungen durchführen. Es ist wichtig, die Gründe, Anforderungen und Standards für Änderungen klar zu benennen, und diese Änderungen müssen ebenfalls überprüft werden.

Design und Entwicklung medizinischer Geräte Case03

The post General Steps In Medical Device Design And Product Development appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/general-steps-in-medical-device-design-and-product-development/feed/ 0
Strategische Freiräume im Formenbau schaffen https://prototool.com/de/creating-strategic-clearance-in-mold-design/ https://prototool.com/de/creating-strategic-clearance-in-mold-design/#respond Mon, 08 Jan 2024 09:16:15 +0000 https://prototool.com/?p=17139 Creating Strategic Clearance in Mold Design
Prototool

Lernen Sie die wesentlichen Schritte für strategische Freiräume bei der Konstruktion von Kunststoffformen kennen, die eine effiziente Bearbeitung, Montage und Langlebigkeit der Formen gewährleisten.

The post Creating Strategic Clearance in Mold Design appeared first on Prototool written by Prototool.

]]>
Creating Strategic Clearance in Mold Design
Prototool

In plastic mold design, creating strategic clearance is crucial for the seamless operation and assembly of various components. This process ensures that during the design phase, clearances are accurately accounted for, facilitating efficient machining and assembly by the moldmaker. But what are the specific components in plastic mold design that require such clearance?

Overview of Creating Strategic Clearance

Flange and Sprue Bushing

In mold design, the flange should have a unilateral clearance of 0.1mm with the top clamp plate. The sprue bushing should have a unilateral clearance of 0.5mm with its mounting plate and the mold base, as shown in the diagram. Additionally, a 20mm clearance is reserved for the sprue bushing inside the mold cavity for sealing purposes.

Flange and Sprue Bushing Strategic Clearance

Support Pillars and Ejector Components

The support pillar, ejector blocks, and spring holes follow these clearance standards: For support pillars with a diameter under 50mm, a unilateral clearance of 2mm is required. For those over 50mm in diameter, a 3mm clearance is needed. Ejector pin through-holes on the B-plate and ejector retainer plate require a unilateral clearance of 0.5mm. The spring holes on the B-plate should have a clearance of 0.5-1mm.

Support Pillars and Ejector Components Strategic Clearance

Slider Angle Pins and Slide Locking Blocks

The slider angle pin should have a unilateral clearance of 0.5mm with its corresponding hole. If the pin extends into the B-plate, a 2mm clearance is necessary. The slide locking block should maintain a sliding fit with the B-plate, with a unilateral clearance of 0.5mm. Limit screws should have a 1mm clearance on both sides, and a 2mm clearance at the top with the slide locking block.

Slider Angle Pins and Slide Locking Blocks Strategic Clearance
Screws for position limitation Strategic Clearance

Angled Ejectors and Mold Plates

Angled ejectors typically use wire-cut round holes or milling for clearance with the B-plate. The guide blocks for these ejectors, often made of bronze, use a C-angle with rounded corners for clearance with the B-plate. This method facilitates CNC machining.

Angled Ejectors and Mold Plates Strategic Clearance
Angled Ejectors and Mold Plates Strategic Clearance in mold design

Mold Plate and Mold Base Clearance

The mold plate screws should have a unilateral clearance of 0.5mm with the mold base. The same clearance applies to the core locking screws with the mold core, and the small tie-bar sleeves with the mold plate. When designing inserts, ensure a unilateral clearance of 2mm with rounded corners for ease of CNC machining and assembly.

Mold Plate and Mold Base Clearance Strategic Clearance in mold design

Schlussfolgerung

Strategic clearance in mold design is a critical aspect that ensures the smooth operation and longevity of the mold. Proper clearance prevents component wear and facilitates easier machining and assembly, contributing to the overall efficiency and quality of the mold-making process.

The post Creating Strategic Clearance in Mold Design appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/creating-strategic-clearance-in-mold-design/feed/ 0
Faktoren, die sich auf die Kosten oder den Preis von Prototypen auswirken https://prototool.com/de/prototype-cost-prototype-pricing/ https://prototool.com/de/prototype-cost-prototype-pricing/#respond Mon, 08 Jan 2024 07:32:09 +0000 https://prototool.com/?p=17132 Factors Affecting the Prototype Cost or Pricing
Prototool

Entdecken Sie die Schlüsselfaktoren, die die Kosten für Rapid Prototype beeinflussen. Ein präziser Leitfaden zum Verständnis und zur Schätzung der Preise für Rapid Prototype.

The post Factors Affecting the Prototype Cost or Pricing appeared first on Prototool written by Prototool.

]]>
Factors Affecting the Prototype Cost or Pricing
Prototool

Recently, a client emailed us at Prototool, questioning the varying prices of similar products we’ve collaborated on over the years. They wondered if our pricing was arbitrary. Prototool has been in the prototype industry for 12 years, adhering to a policy of integrity and honest pricing. The pricing of prototypes, being custom products, lacks a standard reference. Most factories base their quotes on the perceived difficulty of the manufacturing process, which can be quite subjective.

However, Prototool operates differently. We gather relevant personnel to discuss the process, labor, and analyze costs, risks, and delivery times in detail after organizing the drawings. This approach ensures more accurate pricing. Let’s discuss the factors that influence the cost of a prototype.

1. Choice of Prototyping Method

In the current scenario, common prototyping methods include CNC machining, 3D printing, and small-batch replication. The choice of material often dictates the prototyping method. For materials with higher requirements, CNC machining is preferred despite its higher cost, as it guarantees material stability. For quantities over ten pieces with material requirements similar to ABS, small-batch replication is chosen. This involves creating one or two prototypes with simple silicone molds, significantly saving time and cost compared to CNC machining. 3D printing is less expensive, but the material strength and temperature resistance are much lower than CNC and replication prototypes.

Prototypes are manufactured using CNC machines

2. Materials Used in the Prototype

Sometimes, choosing different materials can lead to a significant difference in pricing. The reasons are twofold. First, the cost of different materials varies greatly. Special materials like PEEK and Teflon are much more expensive than common materials like ABS, PC, and PMMA. Second, the processing time for different materials varies. Harder materials like aluminum alloy, stainless steel, and POM take longer to process compared to plastics like ABS and PC, as the milling speed is slower and more time-consuming.

The cost of prototypes varies from material to material.

3. Differences in Surface Treatment

For basic or internal components, the process usually involves deburring or rough sanding after machining. However, when advanced finishes like painting, electroplating, or transparency are required, it necessitates meticulous sanding by skilled workers. This increases the labor cost significantly, naturally leading to a higher price for these specialized surface treatments.

4. Risk Factors in Prototype Manufacturing

Many are aware that machining magnesium alloys is expensive. This is due to the high reactivity of magnesium alloy, which has a low ignition point, making it prone to catching fire if not handled carefully during processing. This risk can lead to considerable losses. Similarly, materials with high reactivity or designs with thin structural walls have a higher scrap rate. Therefore, prototype pricing specialists consider these risk factors and adjust their quotes accordingly.

5. Rush Orders and Capacity Saturation

Often, there are situations where a prototype is needed urgently, requiring a turnaround time of two to three days instead of the normal five-day cycle. In such cases, each prototype manufacturer must assess their current order saturation before committing. Prioritizing a rush order inevitably impacts the progress of other orders and may require overtime work from the staff. Therefore, the pricing specialists adjust their quotes based on the current order load and the feasibility of completing other orders smoothly, leading to price fluctuations for rush orders.

CNC machined prototypes

The post Factors Affecting the Prototype Cost or Pricing appeared first on Prototool written by Prototool.

]]>
https://prototool.com/de/prototype-cost-prototype-pricing/feed/ 0
Pulverbeschichtung vs. Lackierung bei der Oberflächenbehandlung von Prototypen https://prototool.com/de/powder-coating-vs-painting-in-prototype/ Mon, 08 Jan 2024 03:42:51 +0000 https://prototool.com/?p=17124 Powder Coating vs Painting in Prototype Surface Treatment
Prototool

Entdecken Sie die wichtigsten Unterschiede zwischen der Pulverbeschichtung und der Lackierung im Prototyp, einschließlich der Anwendungsmethoden, der Kosteneffizienz usw.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>
Powder Coating vs Painting in Prototype Surface Treatment
Prototool

Spray coating encompasses spray painting, spray oiling, and spray zinc. In this context, spray painting and spray oiling are considered the same process and will be collectively referred to as spray painting. Powder coating, also known as plastic spraying, is a different process and will be referred to as powder coating in this article. Spray zinc, often used for large architectural steel structures or high-demand metal workpieces, will not be the focus of this discussion. Let’s talk about powder coating vs painting in prototype today.

Among all the surface treatment types mentioned, spray painting is arguably the simplest. It involves pouring paint into a specialized spray painting device and using a spray gun to coat the workpiece. The piece is then left to dry naturally or is dried using high heat. Thus, it’s a relatively straightforward physical process.

The equipment and techniques used in these processes vary, leading to differences in texture and cost.

Differences Between Spray Painting and Powder Coating

Let’s briefly outline their key differences:

Spray Painting vs. Powder Coating: Spray painting is a technique of dispersing liquid paint, commonly referred to as paint into fine dust particles which are blown on the surface of an object using compressed air. Powder coating, on the other hand uses compressed air to spray powder in a high-voltage electrostatic field. The powder particles are then drawn towards the surface of the object using an electric field.

The Correct Term for Powder Coating: Powder coating as a process is properly referred to as “electrostatic powder coating.” It’s not the sort of task that can be accomplished using just an ordinary spray paint gun. Equipment for powder coating comprises a powder supply barrel using compressed air, a High-voltage electrostatic generator and an electrostatic spray gun. Outdoor and indoor powders are the plastic powder used in this process. The main kind is Outdoor powder made ​​of epoxy resin, which in terms of composition differs fundamentally from the paint.

Powder Coating process for Prototype

Analysis of Characteristics For Comparing Powder Coating vs Painting

Powder Coating Process

1. No Solvents in Powder Coatings:

Powder coatings do not contain any solvents and are 100% solid. This aspect addresses pollution issues caused by solvents during manufacturing, transportation, storage, and application. It improves the working conditions for operators and benefits their health.

2. Simplified Coating Process:

The powder coating process involves just three steps: spraying the powder, curing, and cooling, allowing for a one-step film formation. This simplicity significantly streamlines the coating process, shortens the production cycle, and enables product output on the same day. In electrostatic powder coating, the integration of automatic coating machinery and a recycling system can lead to automated production, saving energy and resources and enhancing productivity.

3. High Utilization Rate of Powder Coatings:

Powder coatings can be directly applied to the surface of the object and cured by baking to form a coating. Unused powder can be collected and reused, with a utilization rate of over 95%.

4. Durable and High-Performance Powder Coatings:

Powder coatings can be made from resins that are insoluble at room temperature or high-molecular-weight resins that cannot be liquefied. This results in high-performance coatings with various functionalities. The absence of solvents in the preparation or film formation process prevents pinholes in the coating, making it denser.

5. One-Time Coating Possibility:

A single application of powder coating can achieve a film thickness of 50 to 300 μm without the dripping or sagging issues common with thick paint applications. It also avoids solvent pinholes and defects associated with thick film coatings, and offers high edge coverage. In contrast, paint typically requires multiple applications to achieve a similar thickness or quality.

6. Challenges in Color Changing:

Unlike paint, which can be mixed on-site, the color of powder coatings is predetermined at the factory. Changing the color requires altering the powder coating formula, making quick color changes challenging. Electrostatic spraying necessitates thorough cleaning of the spray gun, powder feeder, spray chamber, transport pipes, and recycling system during color changes, especially when switching between dark and light colors.

7. Difficulty in Achieving Thin Films:

Due to the principles of electrostatic spraying, the thickness of powder coatings is generally above 50 μm. Even with high-quality powder coatings and optimal conditions, achieving a film thickness below 40 μm is challenging.

8. Slightly Inferior Surface Smoothness:

Powder coatings, which rely on heat-induced melting and leveling on the object, have a higher melting viscosity. This can result in a slightly orange-peel texture, making the coating less smooth than paint.

9. Certain Limitations:

The limitations of the powder coating process are mainly in three areas: First, since the curing temperature of powder coatings is generally above 160°C, this restricts their use on heat-sensitive products like plastics. Second, as most powder coating processes use electrostatic spraying, the object must be conductive. Non-metallic objects require conductive treatment and must withstand temperatures above 160°C.

Powder Coating Prototype Case

Spray Painting Process

1. Wide Variety of Paints:

China categorizes paints into seventeen major types, with thousands of varieties available, and new types are continually emerging. Users can select the most suitable paint based on product performance, usage, and environmental factors to achieve optimal coating results.

2. Comprehensive Process Techniques:

Spray painting adapts well to various methods, including brush painting, dip coating, flow coating, roller coating, knife coating, air spray painting, high-pressure airless spray painting, electrophoretic painting, and electrostatic spray painting. Among these, brush painting, air spray painting, and electrophoretic painting are widely used.

3. Lower Initial Equipment Investment:

Spray painting equipment mainly includes spray guns, air compressors, oil-water separators, and necessary air hoses. Compared to the substantial investment required for powder coating equipment, spray painting involves less initial capital, lower production costs, and quicker capital recovery.

4. Simplified Pre-treatment Process:

In spray painting, thanks to the excellent rust-prevention properties of primers and their good adhesion to both substrates and topcoats, the corrosion resistance of the coating is significantly enhanced, ensuring the longevity of the coating. Only degreasing and derusting treatments are needed before applying the primer, thereby simplifying the pre-treatment process, saving production costs, and improving efficiency.

5. Longer Production Cycle and Higher Overall Cost:

Spray painting involves more steps than powder coating. During application, it requires the use of primers, putties, thinners, and topcoats, with drying time needed between each step. Some paints also require heat drying. Therefore, considering material consumption, energy use, and labor costs, the overall cost of spray painting is higher than powder coating, and the production cycle is longer.

6. Poor Environmental Performance:

Harmful to Operators’ Health: Paints contain organic solvents that can volatilize into the air during application and curing. Air spray painting produces a significant amount of overspray and paint mist, which is harmful to health, necessitating the use of protective masks by operators.

7. Higher Fire Hazard Compared to Powder Coating:

Spray painting poses a higher fire risk than powder coating for several reasons: First, the organic solvents in paint are highly volatile and can easily ignite or explode upon contact with open flames or sparks. Powder coatings do not contain organic solvents, thus presenting a lower risk. Second, the flash point, ignition point, and ignition energy of paint are lower than those of powder coatings, leading to faster combustion spread. Lastly, the ventilation equipment, working environment, and operational procedures in air spray painting are generally less advanced than in powder coating, increasing the risk of fire.

It’s important to note that while spray painting has a higher fire risk than powder coating, in the rare event of an explosion, the intensity and destructive power of a powder coating explosion can be much greater than that of liquid paints.

Painting Prototype Case

Powder Coating vs Painting Overall Comparison

Environmental Impact: Powder coating is often seen as being less detrimental to the environment than standard spray painting. It emits lesser amounts of volatile organic compounds (VOCs) that are harmful to human health and the environment.

Durability and Finish: Generally powder coating gives a thicker and more even finish than spray painting. It is more resistant to chipping, scratching and other wear and tear making it great for items requiring a hard finish.

Application Efficiency: Powder coating is more efficient in the application process. Extra powder can be salvaged and reused, thereby reducing wastage. However, spray painting tends to result in overspray and will require more accuracy for an even finish.

Curing Process: Powder coating curing process is faster compared to traditional spray painting. Heating allows for cure-coated items to be ready much faster.

Kostenüberlegungen: Although this initial setup cost for powder coating can be more due to the equipment needed it will actually work out cheaper in ring term because of its efficency, life span and lower waste.

The post Powder Coating vs Painting in Prototype Surface Treatment appeared first on Prototool written by Prototool.

]]>